Novel EGFR antibody outperforms cetuximab in mouse model of lung cancer

Antibodies that selectively bind and destroy cancer cells represent some of the most promising cancer therapy approaches being developed today. Several of these antibodies have reached the market, including cetuximab (Erbitux®, ImClone Systems), which targets the epidermal growth factor receptor (EGFR) protein. However, a study conducted at the Dana-Farber Cancer Institute and the Ludwig Center at Dana-Farber/Harvard Medical School now suggests that antibodies binding a particular protein conformation, caused by hyperactivation, might have distinct therapeutic advantages over antibodies, like cetuximab, that bind to wild-type (normal) target proteins.

The study, led by Dana-Farber Cancer Institute's Dr. Kwok-Kin Wong, and published today in the Journal of Clinical Investigation, is part of a multi-center, international effort to assess the clinical potential of the 806 antibody. The 806 antibody was discovered by scientists at the Ludwig Institute for Cancer Research. The antibody targets EGFR only when the receptor has been activated by mutations, by the protein's over-expression or by amplification of the EGFR gene. In the present study, Dr. Wong compared the action of cetuximab and 806 in a mouse model of non-small cell lung cancer (NSCLC) caused by different activating mutations in EGFR.. The 806 antibody caused a dramatic tumor regression in the mice, while cetuximab did not.

“Cetuximab only works on a subset of patients with lung cancers,” says Wong. “We think the 806 antibody might benefit those patients who respond to cetuximab but, more importantly, might also be effective for those patients who don't.” According to Dr. Wong, approximately 10-30 percent of patients with NSCLC and 5 percent of patients with squamous cell lung cancers have EGFR activating mutations. Some brain tumors also have EGFR activating mutations that are – in animal studies – responsive to the 806 antibody. A phase I clinical trial of the 806 antibody has been completed in Melbourne, Australia by the Ludwig Institute for Cancer Research co-authors. The antibody was shown to target a variety of cancers, including squamous cell lung cancer, with no targeting of normal tissues and no toxicity.

Media Contact

Sarah L. White EurekAlert!

Weitere Informationen:

http://www.licr.org

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Rotation of a molecule as an “internal clock”

Using a new method, physicists at the Heidelberg Max Planck Institute for Nuclear Physics have investigated the ultrafast fragmentation of hydrogen molecules in intense laser fields in detail. They used…

3D printing the first ever biomimetic tongue surface

Scientists have created synthetic soft surfaces with tongue-like textures for the first time using 3D printing, opening new possibilities for testing oral processing properties of food, nutritional technologies, pharmaceutics and…

How to figure out what you don’t know

Increasingly, biologists are turning to computational modeling to make sense of complex systems. In neuroscience, researchers are adapting the kinds of algorithms used to forecast the weather or filter spam…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close