Scripps Research study reveals new function of protein kinase pathway in tumor suppression

The study, led by Associate Professor Peiqing Sun and Professor Jiahuai Han of The Scripps Research Institute, is being published on January 26, 2007 in the journal Cell.

The research focused on signaling pathways that mediate an anti-tumor defense response called senescence, or cellular aging. The research, which was conducted in both human cell culture and rodent models with skin cancer or lymphoma, identified one essential element of this anti-tumor response, namely, p38-regulated/activated protein kinase (PRAK). Previous to this research, PRAK's physiological functions had been poorly understood.

“In uncovering this basic mechanism, we've advanced our knowledge in terms of how cancers develop,” Sun said. “More importantly, we have identified a pathway in normal cells that, when activated, can inhibit tumor development. This lays the groundwork for new cancer therapy–for future drug development to artificially activate this pathway in cancer cells.”

The human body has several built-in mechanisms that prevent cancer development. One is cell death, or apoptosis. Another is premature senescence, a recently identified tumor-restricting response that permanently stops cell proliferation.

“A normal cell stops dividing when it gets old,” Sun explained. “This is referred to as senescence of a cell. A young cell will become senescent prematurely when it acquires a mutation that activates an oncogene. This is one of the ways our body tries to eliminate cells that might become cancerous.”

In previous research that set the stage for this current project, Sun's lab worked to identify the signaling cascade that mediates ras-induced premature senescence (ras is an oncogene, a gene that, when activated by mutations, causes cancer by transducing unrestricted growth signals). Using human cells in culture, Sun's team showed that the p38 mitogen-activated protein (MAP) kinase is required for ras to induce senescence in cell culture.

“After these findings, we wanted to look downstream of p38 to see exactly how this MAP kinase mediates senescence,” Sun explained. “We knew the effect of p38 is achieved through its ability to regulate its downstream substrates, so we started to investigate various substrate candidates to see which ones were involved.”

Fortunately, Sun added, his research team could easily link up with a leading expert in the p38 field, Professor Jiahuai Han. The p38 gene was cloned by Han in 1994. Since then, the Han lab has identified some p38 downstream protein kinases, including PRAK, and has shown that PRAK can be activated by various stresses. The Han research group also engineered PRAK knockout mice, animals that lack the PRAK gene, expecting that these mice would be defective in stress response. To the researchers' surprise, the mice responded normally to stresses, an indication that this gene may not be required for the stress pathway.

Joining forces, Sun and Han collaborated to investigate the role of PRAK in senescence response and tumor suppression. They also enlisted the expertise of Scripps Research investigators John Yates and Peter Wright and their laboratory groups.

What the researchers found was that PRAK is required for ras to induce senescence in vitro in normal cells derived from a mouse. They also did an experiment to see if the lack of PRAK would make a difference in senescence induction in human cells. The team introduced double-strand RNA into normal human fibroblast cells to inhibit the expression of PRAK and then activated the ras oncogene in these cells. The results were identical to those in mouse cells. When PRAK was inactivated in normal human cells, these cells did not undergo premature senescence.

“These experiments tell us that PRAK in both human cells and in mouse cells is an essential component that mediates ras-induced senescence,” said Sun.

The researchers wanted, next, to find out whether PRAK was essential for ras-induced senescence in vivo, and whether deletion of the PRAK gene would make a difference in the ras-induced tumor-development process in PRAK knockout mice. A group of these mice and a group of normal mice were treated with DMBA, an environmental pollutant found in cigarette smoke and gas emissions, which can induce ras mutations and cause skin tumor formation. The researchers monitored the incidence of skin tumor formation in these mice, and after tumors formed, the degree of cell senescence in the tumors. The results, Sun said, were exciting.

“The mice lacking the PRAK gene were more susceptible to skin tumor induction by DMBA, as compared to wild-type mice,” Sun said. “This indicates that the presence of the normal PRAK gene suppresses tumor formation. In the wild-type, normal mice, DMBA induced premature senescence, but in the knockout tumors there were no senescent cells. The PRAK knockout animals were resistant to ras-induced senescence but prone to tumor induction, which led us to the happy conclusion that PRAK and the senescence response mediated by PRAK has a tumor-suppressing function in vivo. The knockout mice were more vulnerable to tumor induction because the senescence pathway, which is responsible for the anti-tumor self-defense mechanism, had been compromised. In addition to the skin cancer model, loss of the PRAK gene in mice also accelerates lymphoma development, which indicates that PRAK may be involved in suppressing tumor formation in multiple tissues.”

Media Contact

Keith McKeown EurekAlert!

Weitere Informationen:

http://www.scripps.edu

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Cyanobacteria: Small Candidates …

… as Great Hopes for Medicine and Biotechnology In the coming years, scientists at the Chair of Technical Biochemistry at TU Dresden will work on the genomic investigation of previously…

Do the twist: Making two-dimensional quantum materials using curved surfaces

Scientists at the University of Wisconsin-Madison have discovered a way to control the growth of twisting, microscopic spirals of materials just one atom thick. The continuously twisting stacks of two-dimensional…

Big-hearted corvids

Social life as a driving factor of birds’ generosity. Ravens, crows, magpies and their relatives are known for their exceptional intelligence, which allows them to solve complex problems, use tools…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close