Molecular Link between Inflammation and Cancer Discovered

The study, published in the January 26 issue of the journal Cell, shows that what scientists thought were two distinct processes in cells—the cells’ normal development and the cells’ response to dangers such as invading organisms—are actually linked. The researchers, who were also from the Salk Institute for Biological Studies and the La Jolla Institute for Allergy and Immunology, say that the linkage of these two processes may explain why cancer, which is normal growth and development gone awry, can result from chronic inflammation, which is an out-of-control response to danger.

“Although there is plenty of evidence that chronic inflammation can promote cancer, the cause of this relationship is not understood,” said Alexander Hoffmann, an assistant professor of chemistry and biochemistry at U.C. San Diego, who led the study. “We have identified a basic cellular mechanism that we think may be linking chronic inflammation and cancer.”

Cellular defense is a rapid process compared to cellular development, just as a state’s response to terrorist threats is swifter than the construction of new infrastructure. However, in both settings, safeguarding against threats and building structures have certain steps in common and require similar types of workers, or molecules.

Hoffmann referred to the parallel sets of steps in cellular defense and development as “mirror image pathways.” His team showed that these pathways are not distinct from one another because they are linked by a protein called p100. They found that inflammation leads to an increase in p100, but that p100 is also used in certain steps in development. Therefore p100 allows communication between inflammation and development.

A small amount of dialogue between inflammation and development is beneficial, say the researchers, akin to how information from anti-terrorism efforts could be useful to crews building the state’s infrastructure. On the other hand, the constant influence of defense processes on development is detrimental.

“Studies with animals have shown that a little inflammation is necessary for the normal development of the immune system and other organ systems,” explained Hoffmann. “We discovered that the protein p100 provides the cell with a way in which inflammation can influence development. But there can be too much of a good thing. In the case of chronic inflammation, the presence of too much p100 may overactivate the developmental pathway, resulting in cancer.”

In the paper, the researchers propose that thinking of the processes of defense and development as part of a single large system “represents an opportunity for therapeutic intervention.” For example, it might be easier to break the link between inflammation and cancer by targeting the developmental pathway, rather than the inflammation pathway.

“Many of the developmental signals that cells use are sent outside the cell, so they should be easier to block with drugs than inflammation signals, which tend to be confined within cells,” said Hoffmann. “It’s more challenging to design drugs that will enter cells.”

Because the molecules that play a role in the inflammation and development pathways have been extensively studied for many years, the researchers say that it is surprising to find a new molecule that significantly revises scientists’ understanding about the interactions between inflammation and development. They credit their discovery to an approach that combines biochemical techniques and computation.

“Our mathematical model of inflammation and development includes 98 biochemical reactions,” said Soumen Basak, a postdoctoral fellow working with Hoffmann. “ When we ran the model, it predicted that p100 levels would be elevated for a significant period of time when the inflammation pathway was stimulated. We confirmed the prediction using biochemical techniques with cells in the laboratory.”

“ The finding is exciting because it means that p100 provides cells with a memory to inflammatory exposure,” added Basak, who was the first author on the paper.

Also contributing to the study were Hana Kim, Jeffrey D. Kearns, Ellen O’Dea, Shannon L. Werner and Gourisankar Ghosh from U.C. San Diego, Vinay Tergaonkar and Inder M. Verma from the Salk Institute for Biological Studies, and Chris A. Benedict and Carl F. Ware from the La Jolla Institute for Allergy and Immunology.

The study was supported by the National Institutes of Health, the Leukemia and Lymphoma Society of America and the American Heart Association.

Media Contact

Sherry Seethaler EurekAlert!

More Information:

http://www.ucsd.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors