New form of oxygen found

Oxygen piles up: the four atom form might make good fuel. <br>© Photodisc

Scientists have detected a molecule they’ve been looking for since the 1920s.

Scientists in Italy have discovered a new form of oxygen1. In addition to the two well-known forms – ozone and the oxygen molecules in air – there is a third, they say, in which oxygen atoms are grouped in fours.

The oxygen molecules that we breathe (denoted O2) consist of two oxygen atoms. This, the most stable form of oxygen, makes up about one-fifth of air. Ozone is more reactive and comprises three oxygen atoms (O3). It is formed in the atmosphere in small quantities when sunlight splits O2 into its component atoms, which then recombine.

Now Fulvio Cacace and colleagues at the University of Rome ’La Sapienza’ have produced evidence of O4. The existence of such a molecule has been predicted since the 1920s, but extensive searches for it have yielded only tentative previous sightings.

Several chemical elements exist in more than one form or ’allotrope’. Carbon, for instance, forms diamond and graphite, as well as hollow, cage-like molecules called fullerenes and nanotubes. The atoms are arranged differently in each of these forms.

The interest in new oxygen allotropes is not purely theoretical. Liquefied ordinary oxygen (O2) is used as a rocket fuel (called LOX), as it reacts energetically with fuels such as hydrogen and hydrocarbons. As the O4 allotrope packs a lot of oxygen into a small space, it might be even more energy-dense.

O4 might also make a fleeting appearance in atmospheric chemical reactions that are responsible for the phenomenon of ’nightglow’ on Earth and other planets.

Four sight

To prove conclusively that they had identified O4, Cacace’s team used mass spectrometry. This technique separates a mixture of electrically charged molecules (ions) according to their mass and charge.

The researchers combined O2 molecules and positively charged O2 ions to produce O4 ions, which are identifiable by being four times as massive as oxygen atoms. They then added an electron to each O4 ion, transforming it to a neutral molecule.

After a short interval, the team stripped an electron from each O4 molecule so that they could detect them again as ions (neutral molecules are invisible to mass spectrometry). They reasoned that if the neutral molecules were sufficiently stable, they would show up when re-ionized – as indeed they did.

What O4 looks like is still a mystery. Earlier theoretical calculations suggested two possibilities: a rhombus-shaped molecule with an atom at each corner, or a triangle of atoms with the fourth in the centre. But neither of these options fits the researchers’ results very well.

Instead, they think that O4 is probably composed of two dumbbell-like O2 molecules that are loosely bound together.

References

  1. Cacace, F., de Petris, G. & Troiani, A. Experimental detection of tetraoxygen. Angewandte Chemie International Edition, 40, 4062 – 4065 , (2001).

Media Contact

PHILIP BALL © Nature News Service

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Researchers break magnetic memory speed record

Advance could lead to new generation of ultrafast computer chips that retain data even when there is no power. Spintronic devices are attractive alternatives to conventional computer chips, providing digital…

Tracing the source of illicit sand–can it be done?

Research presented at the 2020 GSA Annual Meeting. If you’ve visited the beach recently, you might think sand is ubiquitous. But in construction uses, the perfect sand and gravel is…

Location and extent of coral reefs mapped worldwide using advanced AI

Nearly 75% of the world’s coral reefs are under threat from global stressors such as climate change and local stressors such as overfishing and coastal development. Those working to understand…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close