Taking a flying jump

Ever wondered why you aren’t able to swat a fly? The fly’s secret in avoiding death in this way lies in its decision to jump rather than to fly out of the way. “This kind of low-power decision-making could be of interest to those building autonomously navigating robots”, according to Gwyneth Card of the California Institute of Technology, who will be presenting her work on triggered escape response at the Society for Experimental Biology Annual Main Meeting in Barcelona, on Wednesday 13th July [session A7.15].

To investigate responses in Drosophila melanogaster, she performed experiments dropping black discs from different angles, on a collision course with the flies. Capturing the responses on video, she showed that flies escaped by means of jumping in a forward fashion and directly away from the object, in addition to using their wings. Her results suggest that signals in the brain transferred via the ‘giant fibre pathway’, initiate a “take-off” sequence, involving stretching of the legs and depression of the wings that can move the fly in a specific direction.

Previous studies did not detect directional jumping1, but observations were made in conjunction with non-directional stimuli such as switching lights on and off. Card’s results imply that there could be a simple neural solution that “answers” questions within what is essentially a reflex arc.

Media Contact

Diana van Gent alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Perovskite solar cells soar to new heights

Metal halide perovskites have been under intense investigation over the last decade, due to the remarkable rise in their performance in optoelectronic devices such as solar cells or light-emitting diodes….

Blue hydrogen can help protect the climate

An international group of researchers led by the Paul Scherrer Institute and the Heriot-Watt University has carried out in-depth analyses of the climate impact of blue hydrogen. This is produced…

Genes associated with hearing loss visualised in new study

Researchers from Uppsala University have been able to document and visualise hearing loss-associated genes in the human inner ear, in a unique collaboration study between otosurgeons and geneticists. The findings…

Partners & Sponsors