A gene that keeps species apart

Nearly 150 years after Darwin published On the Origin of Species, biologists are still debating how new species emerge from old–and even the definition of species itself. Darwin demurred from offering a hard and fast definition, suggesting that such a thing was “undiscoverable.”

In this issue of PLoS Biology, Daniel Barbash and colleagues identify a true speciation gene in the fruitfly Drosophila.

One of the more enduring definitions characterizes organisms as distinct reproductive units and species as groups of individuals that can interbreed and produce viable, fertile offspring. The lack of genetic exchange between species, called reproductive isolation, lies at the heart of this definition.

At the heart of reproductive isolation is a phenomenon called hybrid incompatibility, in which closely related species are capable of mating but produce inviable or sterile offspring.

The classic example of hybrid incompatibility is the male donkeyfemale horse cross, which yields a sterile mule, but many other cases have been documented among mammals, and thousands of plant crosses produce infertile offspring.

To elucidate the molecular mechanisms of reproductive isolation, biologists must first identify candidate hybrid incompatibility genes.

Species- or lineage- specific functional divergence is an essential trait of these genes. (That is, the genes evolve different functions after the species diverge from their common ancestor.) While several such candidate genes have been identified in the fruitfly Drosophila melanogaster, none has been shown to display this functional divergence.

Now, working with D. melanogaster and its sibling species D. simulans and D. mauritiana, Daniel Barbash, Philip Awadalla, and Aaron Tarone establish the functional divergence of a candidate hybrid compatibility gene and confirm its status as a true speciation gene.

Citation: Barbash DA, Awadalla P, Tarone AM (2004) Functional divergence caused by ancient positive selection of a Drosophila hybrid incompatibility locus. PLoS Biol 2(6):e142. DOI: 10.1371/journal.pbio.0020142.

CONTACT:
Daniel Barbash
University of California, Davis
Davis, CA, U.S.A.
530-752-4253
dabarbash@ucdavis.edu

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

New machine learning tool tracks urban traffic congestion

UBER driver data helps track and potentially alleviate urban traffic congestion. A new machine learning algorithm is poised to help urban transportation analysts relieve bottlenecks and chokepoints that routinely snarl…

Voyager spacecraft detect new type of solar electron burst

Physicists report accelerated electrons linked with cosmic rays. More than 40 years since they launched, the Voyager spacecraft are still making discoveries. In a new study, a team of physicists…

Cooling electronics efficiently with graphene-enhanced heat pipes

Researchers at Chalmers University of Technology, Sweden, have found that graphene-based heat pipes can help solve the problems of cooling electronics and power systems used in avionics, data centres, and…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close