How amphetamine affects the dopamine transporter

Essential for normal central nervous system function, dopamine signaling mediates physiological functions as diverse as movement and lactation. The dopamine transporter (DAT) is involved in terminating dopamine signaling by removing the dopamine chemical messenger molecules from nerve synapses and returning them into the releasing neurons (a process called reuptake). DAT can also bind amphetamine, cocaine, and other psychostimulants, which inhibit dopamine reuptake, and, in the case of amphetamine, also stimulate the release of dopamine through DAT. It is thought that abnormal concentrations of dopamine in synapses initiate a series of events that cause the behavioral effects of these drugs. The biochemical steps underlying amphetamine-induced dopamine release, however, are not well characterized. Now, a team led by Jonathan Javitch and Aurelio Galli has identified a chemical modification of DAT that is essential for DAT-mediated dopamine release in the presence of amphetamine. Since this modification does not inhibit the ability of DAT to accumulate dopamine, it may suggest a molecular target for treating drug addiction.

Citation: Khoshbouei1 H, Sen N, Guptaroy B, Johnson L, Lund D, et al.(2004) N-Terminal Phosphorylation of the Dopamine Transporter Is Required for Amphetamine-Induced Efflux. PLoS Biol: e78 DOI: 10.1371/journal.pbio.0020078

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors