How amphetamine affects the dopamine transporter

Essential for normal central nervous system function, dopamine signaling mediates physiological functions as diverse as movement and lactation. The dopamine transporter (DAT) is involved in terminating dopamine signaling by removing the dopamine chemical messenger molecules from nerve synapses and returning them into the releasing neurons (a process called reuptake). DAT can also bind amphetamine, cocaine, and other psychostimulants, which inhibit dopamine reuptake, and, in the case of amphetamine, also stimulate the release of dopamine through DAT. It is thought that abnormal concentrations of dopamine in synapses initiate a series of events that cause the behavioral effects of these drugs. The biochemical steps underlying amphetamine-induced dopamine release, however, are not well characterized. Now, a team led by Jonathan Javitch and Aurelio Galli has identified a chemical modification of DAT that is essential for DAT-mediated dopamine release in the presence of amphetamine. Since this modification does not inhibit the ability of DAT to accumulate dopamine, it may suggest a molecular target for treating drug addiction.

Citation: Khoshbouei1 H, Sen N, Guptaroy B, Johnson L, Lund D, et al.(2004) N-Terminal Phosphorylation of the Dopamine Transporter Is Required for Amphetamine-Induced Efflux. PLoS Biol: e78 DOI: 10.1371/journal.pbio.0020078

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Defects in quartz crystal structure reveal the origin of dust

University of Tübingen research team uses properties of quartz in sediments to study sedi-mentary cycles and climate dynamics. Global warming and a progressively drier climate in many parts of the…

Ultra-thin film creates vivid 3D images with large field of view

Glass-free technique could enable visual features that don’t require special reading devices or illumination. Researchers have developed a new ultra-thin film that can create detailed 3D images viewable under normal…

Artificial photosynthesis can produce food without sunshine

Scientists are developing artificial photosynthesis to help make food production more energy-efficient here on Earth, and one day possibly on Mars. Photosynthesis has evolved in plants for millions of years…

Partners & Sponsors