Tissue cells can revert to stem cells

Scientists at the Carnegie Institution in Baltimore, MD, have found that certain cells involved in egg development in the fruitfly can be stimulated to revert to fully functioning stem cells. “This finding could lead to new sources of stem cells from other tissues and other animals,” commented Dr. Allan Spradling, director of the Carnegie department and co-author of the study published in the March 14 online issue of Nature.

The research conducted by Spradling — a Howard Hughes Medical Institute Investigator — and colleague Dr. Toshie Kai, involved so-called germline stem cells of the female fruitfly. These cells are precursors to eggs and begin their journey as stem cells living in a special environment called a niche. In the niche, a stem cell splits into two daughter cells, one of which leaves the niche to begin its transformation. Through a series of 4 divisions a cluster of 16 cells forms — an immature egg with 15 accompanying nurse cells. The researchers discovered that the cells in clusters of 4 and 8 cells can still return to the stem-cell state under appropriate conditions. Moreover, the reverted stem cells worked as well as normal stem cells. Flies with only reverted stem cells were as fertile as normal flies throughout adult life.

“For most stem cells, it has not been possible yet to determine how quickly their progeny cells lose the ability to function again as stem cells,” Spradling noted. “In the fruitfly (Drosophila) ovary we could directly test this and found conditions where the cluster cells reverted to a stem-cell state and functioned throughout the entire life of the adult. We don’t know yet if this will be a general result that applies to other stem cells,” cautioned Kai. “The progeny of germline stem cells might develop relatively slowly compared with other stem cell progeny, and thus retain their ’stemness’ longer.”

The scientists made their discovery by placing the cell clusters in an unusual environment, the immature ovary of a developing Drosophila larva. “We think that two factors present in the larval ovary may have helped cause the cells to revert back to stem cells,” Kai commented. “First, the larval ovary has an abundant supply of the fruitfly protein that is analogous to a protein (BMP4) involved in germ-cell development in developing mammalian embryos. It is required by fruitfly germline stem cells and maintains them in the niche. Second, the cells in the larval ovary are unlikely to block reversion, in contrast to the cells that cluster cells encounter normally.” Providing the proper conditions for reversion is likely to be a major issue in future attempts to revert differentiating cells back into stem cells.

“Differentiated or partially differentiated cells are much more common in the body than stem cells,” Spradling noted. “So harnessing them could be a valuable strategy in efforts to enhance tissue repair. Some animals that can regenerate lost parts seem to utilize differentiated cells as a source of progenitors, and not just pre-existing stem cells. We are very excited about what further studies in the fruitfly and other animals might show us,” Spradling concluded.

Media Contact

Dr. Allan Spradling EurekAlert!

More Information:

http://www.ciw.edu/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors