Transgenic Mosquitoes are Less Fertile Than Their Counterparts in Nature

Discovery, Published in the Proceedings of the National Academy of Sciences, Flies in the Face of Past Assumptions

A UC Riverside team in the Entomology Department has found that genetically engineered mosquitoes are less fertile and less healthy than mosquitoes that have not been altered.

The discovery, made in the laboratory of biological control extension specialist Mark Hoddle, has been included in the latest issue of the journal Proceedings of the National Academy of Sciences. It is a critical piece of the puzzle in the search for ways to combat mosquito-carried illnesses, such as yellow fever and dengue, because transgenic mosquitoes must be able to compete in the wild in order to combat the illnesses.

Up to now, scientists have debated whether transgenic mosquitoes would have similar or reduced levels of fitness relative to their untransformed counterparts. This work shows that their fitness is dramatically decreased.
Postgraduate researcher Nicola Irvin, under Hoddle’s supervision and in collaboration with Professor Peter Atkinson, was able to quantify the fitness of three different transgenic strains of Aedes aeypti, the mosquito vector of yellow fever and dengue. Irvin found that nearly all aspects of development and reproduction of transgenic mosquitoes was severely impaired when compared to non-engineered mosquitoes of the same type.

For example, in four consecutively laid batches of eggs, non-transformed mosquitoes survived from egg to adulthood between 17 and 64 percent of the time. That percentage was between 0 and 23 for transgenic mosquitoes. The average number of eggs laid by non-engineered mosquitoes ranged between 46 and 90, while for transgenic mosquitoes the range was between 14 and 58.

“These data have major implications for the competitiveness of transgenic mosquitoes with non-transformed wild-types,” said Hoddle. “Analyses indicate that since engineered mosquitoes lay fewer eggs and egg-adult survivorship is lower they will not be able to increase their population mass after release and therefore will be unable to displace disease-carrying mosquitoes.”

Atkinson, the professor who leads a major research program to genetically modify mosquitoes to combat mosquito-borne disease, was not surprised that there was a fitness cost associated with transgenesis, but was surprised with the magnitude of it. “Once we determine the genetic basis of these fitness costs it should be possible to generate competitive mosquitoes that will prevent the transmission of human diseases,” he said.

Atkinson uses a jelly fish “marker gene” that glows under ultraviolet light so he can quickly identify which mosquitoes have successfully incorporated the new genes into their DNA. The next step is to tightly link “effector genes” to them that will block the mosquito’s ability to carry the disease. “Theoretically, once released into the wild they should compete with disease carrying mosquitoes and reduce the incidence of malaria, dengue fever, and other mosquito-borne maladies,” Atkinson said.

Media Contact

Kris Lovekin UC - Riverside

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

High-thermoresistant biopolyimides become water-soluble like starch

This is the first report for the syntheses of water-soluble polyimides which are Interestingly derived from bio-based resources, showing high transparency, tunable mechanical strength and the highest thermoresistance in water-soluble…

Land management in forest and grasslands

How much can we intensify? A first assessment of the effects of land management on the links between biodiversity, ecosystem functions and ecosystem services. Ecosystem services are crucial for human…

A molecular break for root growth

The dynamic change in root growth of plants plays an important role in their adjustment to soil conditions. Depending on the location, nutrients or moisture can be found in higher…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close