Fever enzyme identified

A specific enzyme that is a central part in the regulation of body temperature has been identified by a research team at Linkoping University, Sweden. The enzyme is a potential target in the development of new and selective fever reducing drugs.

Professor Anders Blomqvist, MD David Engblom and co-authors are publishing their findings in Nature Neuroscience.

Fever is caused when small, easily diffusible molecules known as prostaglandin E2 are bonded to receptors on deep neural structures and change the brain’s thermostat. However, the prostaglandins are not produced until the specific enzyme mPGES-1 signal an ongoing inflammation somewhere in the body.

By using genetically modified mice the researchers found evidence of this function. A group of mice lacking the gene for mPGES-1 were injected with a bacterial extraction. The same injection was given to a group of wild-type mice. The result was a consistent elevation of body temperature in the wild-type group, while modified mice remained feverless.

Analyzing the content of prostaglandin E2 in the brain confirmed the result.

– The fever reducing drugs used today inhibit the formation of a wide range of substances, which explains most of side-effects such as gastritis, kidney disease and cardio-vascular symptoms. If you can aim directly at the enzyme mPGES-1 you will get a more specific effect, says Anders Blomqvist.

Media Contact

Anders Blomqvist alfa

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Argonne targets lithium-rich materials as key to more sustainable cost-effective batteries

Next-generation batteries using lithium-rich materials could be more sustainable and cost-effective, according to a team of researchers with the U.S. Department of Energy’s (DOE) Argonne National Laboratory. The pivotal discovery,…

Why disordered light-harvesting systems produce ordered outcomes

Scientists typically prefer to work with ordered systems. However, a diverse team of physicists and biophysicists from the University of Groningen found that individual light-harvesting nanotubes with disordered molecular structures…

RadarGlass – from vehicle headlight to radar transceiver

As a result of modern Advanced Driver Assistance Systems, the use of radar technology has become indispensable for the automotive sector. With the installation of a large and growing number…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close