Roadsigns for Rodents: Creation of signposts detected in the first non-human species

Humans are not alone in creating ‘signposts’ to help them find their way, according to new research published in the open access journal BMC Ecology. Wood mice, say scientists, move objects from their environment around using them as portable signposts whilst they explore.

The finding is significant as this is the first time such sophisticated behaviour has been identified in any mammal except humans. According to the authors,

“This is precisely how a human might tackle the problem of searching efficiently in a homogeneous environment – for example by placing a cane in the ground as a reference point from which to search for a set of keys dropped on a lawn.”

Quick, effective navigation is vital for the wood mouse. Home-ranges are vast in comparison to the mammal’s size and consist of uniform areas, like ploughed fields, without obvious landmarks. These environments are not the same all year round, and harvest time drastically changes the availability of any ‘fixed’ landmarks, food supplies and hiding places.

During field observations, Pavel Stopka and David Macdonald from the Department of Zoology at the University of Oxford noticed that wood mice move piles of seed shells, leaves and other small objects as they explore. They observed that the mice are most active around these piles and frequently return to them.

Stopka and Macdonald brought wild mice into a controlled environment to see if they were using these items as ‘portable signposts’. Ten groups of 4 male and 4 female mice were put into special arenas with a nest box, food supply and bedding, and given 10, 5cm diameter white discs.

Mice were videoed constantly for 15 days, and their movements analysed. Activity around the nest box tended to consist only of short, local meanderings not based upon the location of the nest. Movement around the discs, however, involved longer journeys associated with exploratory behaviour. This behaviour was observed in both males and females.

When a mouse found an area it was interested in, it would collect a white disc and move it there. The mouse would then continue to explore, its movements focused on the disc’s location. Stopka and Macdonald observed that the mice would continually return to or ‘look for’ the disc – apparently using it to orient themselves. Once the mouse had finished searching a particular area and identified a new point of interest, it would pick up the disc, move it to the new area and repeat the exploration, again using the disc for orientation.

The discs also served as ‘book marks’ for when activity was interrupted. If a predator were detected, the mice would retreat to shelter. Once the threat was over, the mice returned to the disc.

Stopka and Macdonald hypothesise that these signposts are more effective for wood mice than scent marks: they can be moved at any time and are not detectable by predators.

For further information please contact Grace Baynes (press@biomedcentral.com or Tel: +44 20 7631 2988).

Media Contact

Grace Baynes BioMed Central Limited

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Flash graphene rocks strategy for plastic waste

Rice University lab detours potential environmental hazard into useful material. Plastic waste comes back in black as pristine graphene, thanks to ACDC. That’s what Rice University scientists call the process…

Towards next-generation molecule-based magnets

Magnets are to be found everywhere in our daily lives, whether in satellites, telephones or on fridge doors. However, they are made up of heavy inorganic materials whose component elements…

Order in the disorder …

… density fluctuations in amorphous silicon discovered Silicon does not have to be crystalline, but can also be produced as an amorphous thin film. In such amorphous films, the atomic…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close