Mighty mice are less susceptible to muscular dystrophy gene’s effects

The Johns Hopkins scientists who first discovered that knocking out a particular muscle gene results in “mighty mice” now report that it also softens the effects of a genetic mutation that causes muscular dystrophy.

The findings, scheduled for the December issue of the Annals of Neurology and currently online, build support for the idea that blocking the activity of that gene, known as myostatin, may one day help treat humans with degenerative muscle diseases.

Working with mice carrying the genetic mutation that causes Duchenne muscular dystrophy in humans, the scientists discovered that mice without the gene for myostatin had less physical damage to their muscles and were stronger than other mice with the Duchenne mutation.

“’Knocking out’ the myostatin gene isn’t possible for treating patients, but blocking the myostatin protein might be,” says senior investigator Se-Jin Lee, M.D., Ph.D., professor of molecular biology and genetics at Johns Hopkins School of Medicine. “However, myostatin still needs to be studied in people to see if it has the same role in our muscles as it has in mice.”

The researchers caution that, even if myostatin does limit muscle growth in people, blocking it would not cure muscular dystrophy or any other degenerative muscle condition because the underlying cause of disease would be unchanged.

“However, increasing muscle mass and strength by blocking myostatin could conceivably delay progression or improve quality of life,” notes first author Kathryn Wagner, M.D., Ph.D., assistant professor of neurology at Hopkins.

The Hopkins team bred mice without the myostatin gene with mice carrying the genetic mutation that causes Duchenne muscular dystrophy in humans. Muscular dystrophy mice completely lacking myostatin were more muscular and stronger than those with myostatin at 3, 6 and 9 months of age, the researchers report. Perhaps most importantly, their muscle tissue appeared to be healthier.

Duchenne muscular dystrophy is the most common muscular dystrophy and the most common inherited lethal disease of childhood, affecting 1 in 3,500 live male births. (The genetic mutation that causes it is found on the X chromosome, and so is “covered up” in girls, who have two X chromosomes.) There’s no good treatment at this time, and few patients survive into adulthood.

Early in the disease in humans, the regenerative capacity of stem cells in muscle, known as satellite cells, keep up with the damage, but eventually the damaging factors win. The result is not just loss of muscle, but also its replacement with non-muscle tissues, essentially scar tissue and fat.

This scarring process, called fibrosis, is also seen in mice with the muscular dystrophy-causing mutation. The Hopkins team reports that loss of myostatin function significantly reduced the amount of fibrosis, suggesting that the muscle regenerative process was improved.

The Hopkins scientists hope to unravel the mechanism of muscle regeneration in mice with and without myostatin, possibly revealing even better targets for improving the process. They also plan to use special genetic manipulations to turn off the myostatin gene in adult mice, rather than at conception, to see if losing myostatin later in the course of muscular dystrophy is also beneficial.

Authors on the study are Wagner, Lee, Alexandra McPherron and Nicole Winik, all of The Johns Hopkins University School of Medicine. Funding was provided by the National Institutes of Health, the Duchenne Parent Project, and the Muscular Dystrophy Association.

Myostatin was licensed by The Johns Hopkins University to MetaMorphix, Inc., and sublicensed to Wyeth Pharmaceuticals, Inc. Lee and McPherron are entitled to a share of sales royalty received by the University from sales of this factor. Lee, McPherron and the University own MetaMorphix stock, which is subject to certain restrictions under University policy. Lee is a paid consultant to MetaMorphix. The terms of these arrangements are being managed by the University in accordance with its conflict of interest policies.

Media Contact: Joanna Downer 410-614-5105
Email: jdowner1@jhmi.edu

Media Contact

Joanna Downer EurekAlert!

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

How Stable is the Antarctic Ice Sheet?

Scientists from Heidelberg University investigate which factors determine the stability of ice masses in East Antarctica. As temperatures rise due to climate change, the melting of polar ice sheets is…

Smart sensors for future fast charging batteries

European project “Spartacus” launched Faster charging, longer stability of performance not only for electric vehicles but also for smartphones and other battery powered products. What still sounds like science fiction…

Small molecules control bacterial resistance to antibiotics

Antibiotics have revolutionized medicine by providing effective treatments for infectious diseases such as cholera. But the pathogens that cause disease are increasingly developing resistance to the antibiotics that are most…

Partners

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close