Researchers identify a gene essential for the natural killer cell response against cancer

Two parts of the body’s immune system are critical for its normal functioning. One of these, the innate immune component, must defend the body against onslaughts from foreign substances it has never before seen. Failure of the immune system can result in cancer, autoimmune disease, or life threatening viral infections. Scientists at Memorial Sloan-Kettering Cancer Center have identified a gene called MEF that is essential to the development of Natural Killer cells and Natural Killer T-cells, which play a vital role in the innate immune system. Their findings are published as the cover study in the October 2002 issue of Immunity from Cell Press.

“By understanding how the MEF protein promotes the development and function of natural killer cells, we will develop ways to help the innate immune system better recognize and kill cancer cells,” said Stephen D. Nimer, M.D., head of the Division of Hematology Oncology and the study’s senior author. “We are planning future studies to learn how this can improve bone marrow transplant strategies.”

“The differential regulation of perforin gene expression in the innate versus the adaptive immune system provides a selective target for future therapeutic interventions,” explained H. Daniel Lacorazza, Ph.D., the study’s first author.

Media Contact

Joanne Nicholas EurekAlert!

More Information:

http://www.Immunity.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Creating good friction: Pitt engineers aim to make floors less slippery

Swanson School collaborators Kurt Beschorner and Tevis Jacobs will use a NIOSH award to measure floor-surface topography and create a predictive model of friction. Friction is the resistance to motion…

Synthetic tissue can repair hearts, muscles, and vocal cords

Scientists from McGill University develop new biomaterial for wound repair. Combining knowledge of chemistry, physics, biology, and engineering, scientists from McGill University develop a biomaterial tough enough to repair the…

Constraining quantum measurement

The quantum world and our everyday world are very different places. In a publication that appeared as the “Editor’s Suggestion” in Physical Review A this week, UvA physicists Jasper van…

Partners & Sponsors