Growth hormone could make farm fish bigger, faster to market

Connecticut Sea Grant research could be aquaculture breakthrough

Synthetic growth hormones could shorten the growth time needed for farm-raised fish to reach market size. In research led by Connecticut Sea Grant scientist Thomas Chen, transgenics, or the technique of transferring DNA from one species to another, has showed promise as a method for stimulating growth hormone production. Using rainbow trout and tilapia, Chen is testing a synthetic protein to determine whether it can stimulate growth hormone production the same way a natural protein would.

Early results are promising. When Chen and his team transferred the rainbow trout growth hormone gene into common seafood species like carp, catfish and tilapia, the altered fish grew 60 to 600 percent larger. Chen also found that the application of a synthetic growth hormone-releasing peptide was successful, suggesting that the peptide, as well as the hormone itself, can stimulate growth. More studies are underway to confirm the hypothesis. The researchers are further working to find a peptide that will protect farm-raised rainbow trout and other seafood from disease, which often plagues aquaculture operations. If successful, transgenic fish may one day reach commercial aquaculture facilities and reduce both the amount of time and feed needed to grow fish to market size.

CONTACT: Thomas Chen, Professor of Molecular and Cell Biology, University of Connecticut (O) 860-486-5012, Email: tchen@uconnvm.uconn.edu

Media Contact

Ben Sherman EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Creating good friction: Pitt engineers aim to make floors less slippery

Swanson School collaborators Kurt Beschorner and Tevis Jacobs will use a NIOSH award to measure floor-surface topography and create a predictive model of friction. Friction is the resistance to motion…

Synthetic tissue can repair hearts, muscles, and vocal cords

Scientists from McGill University develop new biomaterial for wound repair. Combining knowledge of chemistry, physics, biology, and engineering, scientists from McGill University develop a biomaterial tough enough to repair the…

Constraining quantum measurement

The quantum world and our everyday world are very different places. In a publication that appeared as the “Editor’s Suggestion” in Physical Review A this week, UvA physicists Jasper van…

Partners & Sponsors