Researchers identify first genomic blueprint of cancer preventive compound found in broccoli

Discovery could lead to the identification of other cancer-preventing compounds

Using gene chip technology, researchers at the Johns Hopkins Bloomberg School of Public Health have identified the blueprint of genes and enzymes in the body that enable sulforaphane, a compound found in broccoli and other vegetables, to prevent cancer and remove toxins from cells. The discovery was made using a “gene chip” that allows researchers to monitor the complex interactions of thousands of proteins on a whole genome rather than one at time. The study is published in the September 15, 2002 issue of the journal Cancer Research, and is the first gene profiling analysis of a cancer-preventing agent using this approach. The researchers believe the findings provide a better understanding of the body’s defense mechanisms and could lead to the identification of other cancer-preventing food compounds and strategies.

For the study, the researchers analyzed the downstream genomic targets of the transcription factor Nrf2 (Nuclear factor E2 p45-related factor 2), which scientists previously knew was activated in response to anticancer agents such as sulforaphane. The transcription factor, Nrf2, in response to cancer preventive agents, turns on genes and pathways inside the cell, whose products help in ridding the body of carcinogens.

“Carcinogens mutate the DNA in genes, which leads to cancer. Now, we know that sulforaphane present in broccoli can turn an extensive network of genes and pathways, which can annihilate a broad spectrum of carcinogens,” said Shyam Biswal, PhD, assistant professor of environmental health sciences at the Johns Hopkins Bloomberg School of Public Health.

“With this study we’ve identified the specific genes regulated in response to a promising chemopreventive agent, which tells us how the process of cancer chemoprevention is occurring and provides us with a novel strategy for evaluating potential cancer preventive agents in future,” explained Dr. Biswal.

Dr. Biswal and his colleagues studied the gene profile of small intestines of mice to identify the genes regulated by Nrf2. The researchers treated groups of mice with sulforaphane and compared the effects to control groups in which the Nrf2 gene was knocked off. “In summary, this study expands the scope of the positive, coordinated regulation of a wide variety of cellular defense proteins by Nrf2 and underscores the potential of Nrf2 activation as a strategy for achieving cancer chemoprevention,” said Dr. Biswal.

Media Contact

Tim Parsons EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Advancing materials science with the help of biology and a dash of dish soap

High-speed X-ray free-electron lasers have unlocked the crystal structures of small molecules relevant to chemistry and materials science, proving a new method that could advance semiconductor and solar cell development….

Zeolite nanotube discovery made by researchers at Georgia Tech

Zeolites, which are crystalline porous materials, are very widely used in the production of chemicals, fuels, materials, and other products.  So far, zeolites have been made as 3D or 2D…

Impossible material made possible inside a graphene sandwich

The design of new materials allows for either improved efficiency of known applications or totally new applications that were out of reach with the previously existing materials. Indeed, tens of…

Partners & Sponsors