Making sense of the human genome: researchers characterize a crucial family of signaling proteins in the human genome


In this month’s Genome Biology, Mitch Kostich and colleagues from the Schering-Plough Research Institute (NJ, USA) have identified and mapped an important group of molecules known as protein kinases. These molecules are central to the communication of information both within and between cells, in a process known as cell signaling. Defective protein kinases are associated with hundreds of human diseases, including some types of cancer, and it is hoped that this map, which shows the relationships between 510 human protein kinases, will help researchers find new drugs that can specifically target diseases caused by a defective protein kinase, as well as unlocking the secrets of 60 previously unidentified members of this family.

If our bodies are to work properly, it is important that cells are doing the right thing at the right time. To get things right, the human body has evolved complex signaling pathways that allow our molecules to communicate with each other. Protein kinases are a central part of many signaling pathways, helping to regulate virtually every function in human cells. They belong to a class of biological molecules known as enzymes, which help all the chemical reactions in our bodies to go according to plan. All protein kinases carry out the same function: they transfer a cluster of atoms, known as a phosphoryl group between different molecules. The movement of a phosphoryl group is similar to the flick of a switch that causes a biochemical pathway go slower or faster.

Kostich and his colleagues searched the publicly available sequence databases to find sequences with similarity to known protein kinase molecules. After removals of duplicates and pseudogenes (genes that are not used), they found 510 sequences that were similar to known protein kinases, of which 60 were previously unidentified. Confident that all 510 sequences coded for protein kinases, they constructed a tree-like diagram known as a phenogram, which maps the relationship between different protein kinases based on the differences in their sequence. This phenogram shows that there are five distinct protein kinase families, a result that is consistent with classification systems based on the functions of different protein kinases.

Understanding the relationships between different members of the protein kinase family in humans will provide researchers with important information to unravel the connections been the structure of a protein kinase and its function. The comprehensive nature of the study will also aid researchers in the design of drugs to help those suffering from disease involving defects in cell signaling. In addition, the study has uncovered 60 new protein kinases for which functions have yet to be assigned.

Media Contact

Gordon Fletcher BioMed Central

All news from this category: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Researchers confront optics and data-transfer challenges with 3D-printed lens

Researchers have developed new 3D-printed microlenses with adjustable refractive indices – a property that gives them highly specialized light-focusing abilities. This advancement is poised to improve imaging, computing and communications…

Research leads to better modeling of hypersonic flow

Hypersonic flight is conventionally referred to as the ability to fly at speeds significantly faster than the speed of sound and presents an extraordinary set of technical challenges. As an…

Researchers create ingredients to produce food by 3D printing

Food engineers in Brazil and France developed gels based on modified starch for use as “ink” to make foods and novel materials by additive manufacturing. It is already possible to…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close