See Spot work

Scientists discover Spot 42 function in the galactose operon

Although the E. coli galactose operon is a staple of most biology textbooks, a new report in the July 1 issue of Genes & Development shows that our understanding of this common example of bacterial gene regulation is still evolving.
Dr. Poul Valentin-Hansen and colleagues at the University of Southern Denmark report that a small RNA, called Spot 42, functions by an antisense mechanism to differentially regulate gene expression in the galactose operon.

The E. coli galactose operon is a cluster of four contiguous genes that are expressed as a group and encode enzymes that regulate galactose sugar metabolism. Like all bacterial operons, the four gal genes (galE, T, K, and M) are transcribed into one polycistronic mRNA message. Interestingly though, although all four gal genes are translated from this one polycistronic message, the relative synthesis of the encoded enzymes differs depending upon metabolic conditions.

Although this discoordinate expression of the galactose operon was characterized more than 20 years ago, this report by Dr. Valentin-Hansen and colleagues provides the first mechanistic insight into the process.

Dr. Valentin-Hansen and colleagues have discovered that Spot 42, a small, 109-nucleotide RNA whose physiological role has eluded scientists for nearly 30 years, mediates discoordinate expression of the galactose operon. According to this study, Spot 42 acts as an antisense RNA that binds to a sequence of the GalK mRNA region to repress translation by interfering with ribosome binding. This way, GalK enzyme synthesis can be specifically down-regulated without compromising the production of the other Gal enzymes.

This work answers two long-standing biological questions, namely, how is discoordinate expression of the E. coli galactose operon regulated, and what is the function of Spot 42 RNA. Furthermore, the study provides a valuable example of small RNA-mediated regulation of the bacterial genome.

Media Contact

Heather Cosel EurekAlert!

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Key breakthrough towards on-site cancer diagnosis

No stain? No sweat: Terahertz waves can image early-stage breast cancer without staining. A team of researchers at Osaka University, in collaboration with the University of Bordeaux and the Bergonié…

A CNIO team describes how a virus can cause diabetes

It has recently been described that infection by some enteroviruses – a genus of viruses that commonly cause diseases of varying severity – could potentially trigger diabetes, although its direct…

Targeting the shell of the Ebola virus

UD research team looking at ways to destabilize virus, knock it out with antivirals. As the world grapples with the coronavirus (COVID-19) pandemic, another virus has been raging again in…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close