The Uukuniemi virus helps to explain the infection mechanism of bunyaviruses causing hemorrhagic fevers and encephalitis

The Uukuniemi virus is the first bunyavirus whose structure researchers have been able to determine. Together with more detailed studies of the viral membrane proteins, knowledge of the Uukuniemi virus may provide a basis for development of drugs for treating bunyavirus diseases, such as hemorrhagic fever and encephalitis.

The findings were published in PNAS on the 12th February, 2008.

The researchers solved the three-dimensional structure of the virus particle, which is only 0.0001 mm in diameter, using electron tomography and computational methods. The newly determined virus structure also serves as a model for the other bunyaviruses. Recent research surprisingly revealed that the viral membrane proteins protruding as spikes from the Uukuniemi virus surface changed their shape in an acidic environment. This phenomenon is reminiscent of the mechanism whereby influenza and dengue viruses enter their host cells. The observation helps to explain how bunyaviruses infect their host cells.

The Uukuniemi virus was first isolated in the village of Uukuniemi, Finland in the early ’60s. Since then, it has proven to be an excellent model virus. Not being a human pathogen, the Uukuniemi virus is safe to work with, and yet it is very similar to many pathogenic bunyaviruses.

The Bunyaviridae viral family comprises more than 300 members and they are found worldwide. Many members of the family cause serious disease, such as hemorrhagic fever and encephalitis, for which no vaccines are available yet. Most of the bunyaviruses are transmitted by mosquitoes and ticks. The exception is hantaviruses, which belong to the Bunyaviridae family, and which are spread by voles and other rodents.

More information: Dr. Juha Huiskonen juha.huiskonen@helsinki.fi

Media Contact

Kirsikka Mattila alfa

More Information:

http://www.helsinki.fi

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors