Reading chemicals inside the brain

The aptamer-coupled microelectrode fiber sensors (apta-μFS) for neurochemical sensing.
Credit: T.Saizaki et al.

… with an aptamer/microelectronic fiber combination.

A research group has developed a neural device that detects specific neurotransmitters in the brain with high sensitivity and selectivity by combining multifunctional fibers and DNA molecular probes.

Details of their research were published in the journal Analytical Chemistry on April 24, 2023.

It is estimated that over a billion people suffer from brain disorders worldwide. Current therapeutic techniques use electrical modalities to establish an interface with the brain. This typically involves electrodes being used to read electrical potential or deliver electrical currents to specific tissues of organs in the body.

However, cells inside the brain communicate with each other via chemical signals, and thus researchers have been looking for ways to measure and manipulate both the electrical and chemical signals.

One such breakthrough in this regard has been microscopic, thermally-drawn microelectronic fiber-based neural probes that can act as an interface with the brain across electrical, chemical, optical, and mechanical modalities. Still, the capabilities of this technology for studying intrinsic in-brain chemistry have yet to be explored, and few attempts have studied how it could be integrated with multi-modal and multi-level brain studies.

“We expanded the capabilities of the fibers to include neurochemical sensing,” says Dr. Yuanyuan Guo, associate professor at Tohoku University’s Frontier Research Institute for Interdisciplinary Sciences (FRIS), and leader of the research group. “We coupled aptamers, a new type of biosensor comprising a single strand of synthetic DNA with customizable sequences, on the microelectronic fibers. These defined aptamers sense neurochemicals with high sensitivity and high selectivity.”

Aptamers can be thought of as keys that specifically unlock the locks of certain target molecules. Like a key fits into a specific lock and opens it, an aptamer can bind to a specific molecule and interact with it in a selective manner.

In the study, the defined aptamer sequences bound to specific molecules with a high affinity, inducing a reversible three-dimensional conformational change from a relatively simple chain structure into a complex structure wrapping around targets. Aptamers were tagged with ferrocene as an electrochemical readout for target molecule and aptamer binding.

The research group focused on dopamine due to its physiological significance in mediating learning behavior and motivation. But Guo points out that this sensing mechanism is applicable to other molecules regardless of their charge or electrochemical profile. “Our discovery provides a universal method for fiber surface modification, to monitor wide-range molecules of interest.”

Ultimately, the breakthrough will hopefully enable the development of new brain research and methods for the prevention and treatment of diseases of the brain and organs that have not been elucidated to date.

Journal: Analytical Chemistry
DOI: 10.1021/acs.analchem.2c05046
Article Title: The development of aptamer-coupled microelectrode fiber sensors (apta-μFS) for highly selective neurochemical sensing
Article Publication Date: 24-Apr-2023

Media Contact

Public Relations
Tohoku University
public_relations@grp.tohoku.ac.jp

Media Contact

Public Relations
Tohoku University

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors