New printing technique uses cells and molecules to recreate biological structures

These are cells spreading on the outside of a PA based scaffold. Credit: Clara Hedegaard

These structures are embedded in an ink which is similar to their native environment and opens the possibility to make them behave as they would in the body.

This allows the researchers to observe how cells work within these environments and potentially enables them to study biological scenarios such as where cancer grows or how immune cells interact with other cells, which could lead to the development of new drugs.

The technique combines molecular self-assembly, building structures by assembling molecules like Lego pieces, with additive manufacturing, similar to 3D printing, to recreate the complex structures.

The structures can be manufactured under digital control and with molecular precision which also enables the researchers to create constructs that mimic body parts or tissues for tissue engineering or regenerative medicine.

The study is published in Advanced Functional Materials.

Professor Alvaro Mata, from Queen Mary's School of Engineering and Materials Science, said: “The technique opens the possibility to design and create biological scenarios like complex and specific cell environments, which can be used in different fields such as tissue engineering by creating constructs that resemble tissues or in vitro models that can be used to test drugs in a more efficient manner.”

The technique integrates the micro- and macroscopic control of structural features that printing provides with the molecular and nano-scale control enabled by self-assembly. Because of this, it addresses a major need in 3D printing where commonly used printing inks have limited capacity to actively stimulate the cells that are being printed.

PhD student Clara Hedegaard, leading author of the paper, added: “This method enables the possibility to build 3D structures by printing multiple types of biomolecules capable of assembling into well defined structures at multiple scales. Because of this, the self-assembling ink provides an opportunity to control the chemical and physical properties during and after printing, which can be tuned to stimulate cell behaviour.”

###

The study was carried out in collaboration with the Nanyang Technological University in Singapore and the University of Oxford.

It was supported by the European Research Council's Starting Grant (STROFUNSCAFF), the FP7-PEOPLE-2013-CIG Biomorph, the Royal Society, and the European Space Agency's Drop My Thesis program 2016.

Media Contact

Rupert Marquand
r.marquand@qmul.ac.uk
020-788-23004

 @QMUL

http://www.qmul.ac.uk 

Media Contact

Rupert Marquand EurekAlert!

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Hyperbolic metamaterials exhibit 2T physics

3D nonlinear ferro-fluid-based hyperbolic metamaterials may contribute to ultra-fast all-optical hyper-computing. Metamaterials–nanoengineered structures designed for precise control and manipulation of electromagnetic waves–have enabled such innovations as invisibility cloaks and super-resolution…

40% of O’ahu, Hawai’i beaches could be lost by mid-century

The reactive and piecemeal approach historically used to manage beaches in Hawai’i has failed to protect them. If policies are not changed, as much as 40% of all beaches on…

Thin and ultra-fast photodetector sees the full spectrum

Researchers have developed the world’s first photodetector that can see all shades of light, in a prototype device that radically shrinks one of the most fundamental elements of modern technology….

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close