Neuro-degeneration as a result of disbalanced biochemical equilibrium

Anna von Mikecz, leader of the IUF group Influence of xenobiotics on the cell nucleus, focuses her research on the functional role of clumped, i.e. aggregated, proteins, also called amyloid, in the cell nucleus. As reported in her new scientific paper*, amyloid occurs also in healthy human cells and nuclei, and plays probably an important functional role.

Amyloids are formed by fibrillation of proteins. The main focus in the field of pharmacology lays on the pathological aspects of amyloids and countermeasures against neurodegenerative diseases today aim at the prevention of amyloid formation.

Prof. von Mikecz comments the assumption that amyloid formation is in general adverse, as follows: “This hypothesis is currently discussed controversially among scientists and it is becoming increasingly clear that we do not yet understand the molecular mechanisms of amyloid formation in the cell well enough.”A better understanding of the physiological and functional role of amyloids in the nucleus is a prerequisite for promising therapeutic interventions in neurodegenerative protein deposition diseases.”

The scientist’s results indicate that there is a tipping point for the adverse effect of amyloid in the nucleus, i.e. if a critical amount of amyloid in the nucleus is exceeded, harmful neuro-degenerative effects result.

Her research also shows that the amyloid equilibrium is disbalanced by exposure to xenobiotics such as certain nano-particles and heavy metals. The exposure leads to an increase in the amount of amyloid in the nucleus above the critical amount. This can be observed in vivo in animal studies as well as in vitro in cell cultures.

It is to be expected, that this new concept will facilitate the development of original diagnostic approaches, bring us significantly closer to effective countermeasures and also contribute to understanding the relationship between exposure to xenobiotics and the development of neuro-degenerative diseases.

*Anna von Mikecz (2014). Pathology and function of nuclear amyloid: protein homeostasis matters. Nucleus (open access, June 4th 2014)

Contact:
Dr. Mardas Daneshian
IUF
Phone: +49-(0)211-3389216
mardas.daneshian@iuf-duesseldorf.de

http://www.ncbi.nlm.nih.gov/pubmed/24896092
http://www.iuf-duesseldorf.com/von-mikecz-lab.html

Media Contact

Dr. Mardas Daneshian idw - Informationsdienst Wissenschaft

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors