Microscope measures muscle weakness

The muscle is a highly ordered and hierarchically structured organ. This is reflected not only in the parallel bundling of muscle fibres, but also in the structure of individual cells.

The myofibrils responsible for contraction consist of hundreds of identically structured units connected one after another. This orderly structure determines the force which is exerted and the strength of the muscle.

Inflammatory or degenerative diseases or cancer can lead to a chronic restructuring of this architecture, causing scarring, stiffening or branching of muscle fibres and resulting in a dramatic reduction in muscular function.

Although such changes in muscular morphology can already be tracked using non-invasive multiphoton microscopy, it has not yet been possible to assess muscle strength accurately on the basis of imaging alone.

New system correlates structure and strength

Researchers from the Chair of Medical Biotechnology have now developed a system that allows muscular weakness caused by structural changes to be measured at the same time as optically assessing muscular architecture.

‘We engineered a miniaturized biomechatronics system and integrated it into a multiphoton microscope, allowing us to directly assess the strength and elasticity of individual muscle fibres at the same time as recording structural anomalies,’ explains Prof. Dr. Oliver Friedrich. In order to prove the muscle’s ability to contract, the researchers dipped the muscle cells into solutions with increasing concentrations of free calcium ions.

Calcium is also responsible for triggering muscle contractions in humans and animals. The viscoelasticity of the fibres was also measured, by stretching them little by little. A highly-sensitive detector recorded mechanical resistance exercised by the muscle fibres clamped on the device.

Data pool for simplified diagnosis

The technology developed by researchers at FAU is, however, merely the first step towards being able to diagnose muscle disorders much more easily in future: ‘Being able to measure isometric strength and passive viscoelasticity at the same time as visually showing the morphometry of muscle cells has enabled us, for the first time, to obtain direct structure-function data pairs’, Oliver Friedrich says.

‘This allows us to establish significant linear correlations between the structure and function of muscles at the single fibre level.’ The datapool will be used in future to reliably predict forces and biomechanical performances in skeletal muscle exclusively using optical assessments based on SHG images (the initials stand for Second Harmonic Generation and refer to images created using lasers at second harmonic frequency), without the need for complex strength measurements.

At present, muscle cells still have to be removed from the body before they can be examined using a multiphoton microscope. However, it is plausible that this may become superfluous in future if the necessary technology can continue to be miniaturized, making it possible for muscle function to be examined, for example, using a micro-endoscope.

Further information:
Prof. Dr. Dr. Oliver Friedrich
Phone: +49 9131 85 23174
oliver.friedrich@fau.de

The results have been published in the renowned journal Light: Science & Application:
‘Optical prediction of single muscle fiber force production using a combined biomechatronics and second harmonic generation imaging approach’
doi: 10.1038/s41377-018-0080-3

Media Contact

Dr. Susanne Langer idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.fau.de/

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Scientists achieve higher precision weak force measurement between protons, neutrons

Through a one-of-a-kind experiment at the Department of Energy’s Oak Ridge National Laboratory, nuclear physicists have precisely measured the weak interaction between protons and neutrons. The result quantifies the weak…

High-performance single-atom catalysts for high-temperature fuel cells

Individual Pt atoms participate in catalytic reaction to faciitate the electrode process by up to 10 times. Single-atom Pt catalysts are stable at 700 degrees Celsius and expected to stimulate…

New method allows precise gene control by light

A novel optical switch makes it possible to precisely control the lifespan of genetic “copies”. These are used by the cell as building instructions for the production of proteins. The…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close