Gentle x-ray imaging of small living specimens

Experimental setup of the dose-efficient X-ray imaging method: The specimen is
X-rayed (right), the X-ray wave field downstream of the specimen is enlarged by a
Bragg magnifier that consists of two silicon crystals (center) and recorded with
an efficient photon-counting detector (left). (Photo: Rebecca Spiecker, KIT)

KIT researchers present new method of high dose efficiency and micrometer resolution for biology and biomedicine.

X-ray imaging visualizes hidden structures and processes in living cells and organisms. The radiation that consists of highly energy-rich electromagnetic waves, however, has an ionizing effect and may damage the genetic material. This limits the possible observation period. While conventional X-ray images of soft tissue are of low contrast, phase contrast methods produce far better image contrasts at a reduced radiation dose. With higher resolution, however, gentle imaging becomes increasingly difficult, as a higher dose is required. Moreover, the efficiency of the usually applied high-resolution detectors decreases, as a result of which radiation exposure is further increased. So far, high-resolution X-ray phase contrast imaging of living biological specimens has been possible for a few seconds to minutes only, before severe damage is caused by the radiation.

Living organisms can be observed for longer times with the new method. Here, you can see a parasitic Trichogramma wasp that developed in the egg of a grain moth and emerges from it. (Image: Rebecca Spiecker, KIT)
Living organisms can be observed for longer times with the new method. Here, you can see a parasitic Trichogramma wasp that developed in the egg of a grain moth and emerges from it. (Image: Rebecca Spiecker, KIT)

Researchers from KIT’s Laboratory for Applications of Synchrotron Radiation (LAS), Institute for Photon Science and Synchrotron Radiation, and Physikalisches Institut have now developed a method that uses radiation more efficiently and produces images of micrometer resolution. The method is suited for both living specimens and sensitive materials and opens up new opportunities in biology, biomedicine, and materials sciences. The new system combines X-ray phase contrast with a so-called Bragg magnifier and a photon-counting detector.

Directly Enlarged X-ray Image

“Instead of converting the X-ray image into an image with visible light and enlarging it afterwards, we enlarge it directly,” LAS doctoral researcher Rebecca Spiecker says. “Thanks to this approach, we can use highly efficient large-area detectors.” The researchers use a photon-counting detector with a pixel size of 55 micrometers. Before, the X-ray image of the specimen is enlarged with a so-called Bragg magnifier, as a result of which the resolution of the specimen proper reaches about 1 micrometer. The Bragg magnifier consists of two perfect silicon crystals, whose enlarging effect results from asymmetric diffraction in the silicon crystal lattice. Another big advantage of the Bragg magnifier is the very good optical image transmission. It allows for the nearly loss-free reproduction of all spatial frequencies up to the resolution limit.

Parasitic Wasps Observed for 30 Minutes

Thanks to the combination of propagation-based X-ray phase contrast with a Bragg magnifier and a photon-counting detector, all of which are optimized for an X-ray energy of 30 kiloelectron-volts (keV), the method reaches about the maximum possible dose efficiency for X-ray phase contrast. This allows for far longer observation times of small living organisms with micrometer resolution. Together with scientists from all over Germany, the researchers demonstrated the method in a pilot study of smallest parasitic wasps. For more than 30 minutes, they observed the wasps in their host eggs and how they emerged from them. “The method is also suited for biomedical applications, an example being the gentle three-dimensional histological investigation of biopsy samples,” Spiecker says. The researchers now plan to further improve the setup, to enlarge the field of view, and to increase mechanical stability for even longer measurements.

Original Publication (Open Access): 
Rebecca Spiecker, Pauline Pfeiffer, Adyasha Biswal, Mykola Shcherbinin, Martin Spiecker, Holger Hessdorfer, Mathias Hurst, Yaroslav Zharov, Valerio Bellucci, Tomas Farago, Marcus Zuber, Annette Herz, Angelica Cecilia, Mateusz Czyzycki, Carlos Dias, Dmitri Novikov, Lars Krogmann, Elias Hamann, Thomas van de Kamp, and Tilo Baumbach: Dose-efficient in vivo X-ray phase contrast imaging at micrometer resolution. Optica, 2023. DOI 10.1364/OPTICA.500978
https://doi.org/10.1364/OPTICA.500978

Journal: Optica
DOI: 10.1364/OPTICA.500978
Method of Research: Imaging analysis
Subject of Research: Animals
Article Title: Dose-efficient in vivo X-ray phase contrast imaging at micrometer resolution by Bragg magnifiers
Article Publication Date: 7-Dec-2023

Media Contact

Monika Landgraf
Karlsruher Institut für Technologie (KIT)
monika.landgraf@kit.edu
Office: +49 721 608-41150
 @KITKarlsruhe

Media Contact

Monika Landgraf
Karlsruher Institut für Technologie (KIT)

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A microscope image of lung cancer cells (purple) containing the activated form of a metabolic enzyme called GUK1 (brown) that supports cancer growth. Image Credit: Image: Haigis lab

New Insights Uncover Lung Cancer’s Defensive Weaknesses

Scientists uncover an enzyme that boosts cancer cell metabolism to fuel growth  At a glance: Lung cancer is a particularly challenging form of cancer. It often strikes unexpectedly and aggressively…

The study’s lead author, Sara Gonzalez, and co-authors Hadley Kerr and Maggie Aydlett, record phenotyping data at WHOI’s Environmental Systems. Image Credit: ©Woods Hole Oceanographic

Heat-Resistant Kelp Strain Discovered by Woods Hole Scientists

A new strain of kelp can help support sustainable farming  Like most aquatic vegetation, kelp is being negatively impacted by climate change. Warming ocean temperatures have led to shorter growing…

A codon, a sequence of three nucleotides in DNA and RNA that codes for a specific amino acid, acts like an “instruction manual” for protein synthesis, telling the cell which of the 20 natural amino acids to add to a growing protein chain — or, in the case of the three “stop” codons (known as TAG, TGA, and TAA), signaling the termination of protein synthesis. Yale scientists recoded a cell to have a single, non-degenerative TAA codon. The newly “free” TGA and TAG codons have been reassigned to encode nonstandard amino acids into synthetic proteins that possess new chemistries with innumerable applications. Image Credit: Yale University / Michael S. Helfenbein

Yale Scientists Redefine Genome for Programmable Proteins

Synthetic biologists from Yale were able to re-write the genetic code of an organism — a novel genomically recoded organism (GRO) with one stop codon — using a cellular platform…