Gene acts as a brake on breast cancer progression

New research out of McGill University's Goodman Cancer Research Centre provides compelling new evidence that a gene known as 14-3-3ó plays a critical role in halting breast cancer initiation and progression. The study, led by the Dept. of Biochemistry's William J. Muller, will be published online today in the journal Cancer Discovery.

The discovery of this new target points to novel therapies that eventually could slow or stop breast cancer progression. Muller also says that this gene is likely a major player in a number of other types of cancer.

Based on past clinical observations revealing that the expression of gene 14-3-3ó is silenced in a large percentage of breast cancers, researchers had long suspected that it played a role in stopping cancer cells from dividing. The McGill team wanted to confirm whether this was the case. Using a transgenic mouse model that expresses ErbB2, an oncogene associated with aggressive breast cancers, they inactivated the 14-3-3ó gene in the mammary gland.

“We found that the loss of this expression did, in fact, result in a dramatic acceleration of tumour onset,” explained Muller who is also affiliated with the Research Institute of the McGill University Health Centre (RI MUHC). “The two genes, 14-3-3ó and ErbB2, co-operate, with 14-3-3ó being the brakes. If you lose the brakes, ErbB2 can induce the cells to divide indefinitely. Furthermore, not only is the ability of these cells to divide enhanced but they become extraordinarily metastatic. They can invade distant sites.”

Co-authors include Chen Ling, Vi-Minh-Tri Su and Dongmei Zuo. All are from the Goodman Cancer Research Centre and McGill's Faculty of Medicine in the Dept. of Biochemistry. All authors were supported by grants from the Canadian Institutes of Health Research (CIHR) and the Terry Fox Foundation.

“We are pleased that our funding has led to a better understanding of molecular mechanisms of breast cancer development, which ultimately will lead to improved interventions for breast cancer patients ” said Dr. Morag Park, the Scientific Director of the CIHR, Institute of Cancer.

The paper, Loss of the 14-3-3ó tumour suppressor is a critical event in ErbB2-mediated tumour progression, may be found here: http://cancerdiscovery.aacrjournals.org/content/early/2011/11/10/2159-8290.CD-11-0189.abstract

Contact:
Allison Flynn,
McGill Media Relations

Tel.: 514-398-7698

Media Contact

Allison Flynn EurekAlert!

More Information:

http://www.mcgill.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

China claims new world record for strongest steady magnetic field

The hybrid magnet at the Steady High Magnetic Field Facility (SHMFF) in Hefei, China set a world record for the highest steady magnetic field by a working magnet when it…

Metaholographic platform that detects light exposure

During the COVID-19 pandemic last year, an incident occurred where vaccines exposed to room temperature had to be discarded. Biomedical substances, including vaccines, risk deterioration if not stored properly, so…

Similarity of hepatocytes from liver and from stem cells improved

Research with stem cells is becoming increasingly important, because stem cells can develop into any body cell – skin cells, nerve cells or organ cells such as liver cells, the…

Partners & Sponsors