Fiber-based sensor for demand-based cleaning of closed food processing systems

F-Fiber: Der faserbasierte Fluoreszenz-Sensor ermöglicht den Einblick in geschlossene Behälter – ohne vollen optischen Zugang. Das millimeterfeine Faserende wird über einen Flansch in die Behälterwand integriert und misst dort den Grad des Foulings, sodass Reinigungsroutinen dynamisch angepasst werden können.
© Fraunhofer IPM

In the food processing industry, closed production systems are cleaned according to strictly defined specifications – and often applying unnecessarily large quantities of chemicals. A fiber-optical fluorescence sensor developed at Fraunhofer IPM measures deposits in closed containers in a minimally invasive manner, thus enabling cleaning processes to be controlled and adapted to the actual degree of fouling.

In the food processing industry, high hygiene requirements apply. The cleaning of production facilities must be completely reliable in order to guarantee the safety of food products. For closed containers or pipes in which, for example, milk, beer, or juices are stored or transported, fixed cleaning routines apply. „The more, the better“ is the general rule in this case: cleaning agents, water, energy, as well as the cleaning time are very generously calculated in order to comply with the strict quality regula­tions. This safety margin is not only ecologically questionable but also economically unfavorable, because it causes unnecessary delays in the production process.

Minimally invasive: Millimeter-fine sensor tip detects actual contamination

The „F-Fiber“ sensor developed at Fraunhofer IPM makes it possible to adapt the cleaning of closed vessels, known as Cleaning in Place (CIP), to the actual degree of contamination. F-Fiber consists of an optical fiber measuring one millimeter in diameter, which is embedded in a stainless-steel ferrule. The fiber tip is integrated directly into the container wall of a food tank or food-conveying pipe. Alternatively, it can be attached to an existing connector using a flange. All further hardware components of the measuring system are located outside the production unit and are connected via the fiber.

At the inner wall of the tank or tube, the fiber tip is flushed by the tank or tube content. Over time, molecules accumulate on the sensor tip as well as on the surrounding tank wall, forming an unwanted deposit. The organic deposit emits fluorescence when excited with UV light via the sensor fiber. The emitted fluorescence is guided back onto a highly sensitive detector via the same fiber and evaluated. From the strength of the fluorescence signal, conclusions can be drawn about the degree of fouling. Based on these measured values, the cleaning process can be triggered and adjusted in real time – and this is possible for many different types of food soil that can even occur during the same production process.

Wissenschaftliche Ansprechpartner:

Dr. Alexander Blättermann Phone +49 761 8857-249,

Weitere Informationen: Fraunhofer Institute for Physical Measurement Techniques IPM, Freiburg/Germany

Media Contact

Holger Kock, Fraunhofer IPM, Head of Communications and Media Kommunikation

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

ispace and University of Leicester collaborate on lunar night survival technology

ispace, inc. (ispace), a global lunar exploration company, and the University of Leicester, have agreed to collaborate on approaches to lunar night survivability for future ispace lunar lander and rover…

Technique to analyze RNA structures in ultra-high definition

This is where the Nottingham team, led by Dr Aditi Borkar, Assistant Professor in Molecular Biochemistry & Biophysics in the School of Veterinary Medicine and Science, has achieved a transformative…

Iron could be key to less expensive, greener lithium-ion batteries

What if a common element rather than scarce, expensive ones was a key component in electric car batteries? A collaboration co-led by an Oregon State University chemistry researcher is hoping…

Partners & Sponsors