Feeding RNAs to a molecular shredder

The ski complex plays an important role in the quality management of the cell.<br>Grafic: Felix Halbach © MPI of Biochemistry <br>

Scientists of the Max Planck Institute (MPI) of Biochemistry in Martinsried near Munich, Germany, have now decoded the structure of a protein complex (Ski complex) which plays an essential role in the process of degrading ribonucleic acids (RNAs).

“The Ski complex we investigated feeds RNA molecules to the degradation machinery,” says Felix Halbach, scientist at the MPI of Biochemistry. The study has now been published in the journal Cell.

RNAs are ubiquitous and abundant molecules with multiple functions in the cell, such as allowing the translation of the genomic information into proteins. Any errors that occur during the synthesis of RNA molecules or unwanted accumulation of RNAs can be harmful for the cell. The elimination of defective RNAs or of RNAs that are no longer needed is therefore a key step in the metabolism of a cell. This task is carried out by a protein complex called Exosome, one of the research objects in the department “Structural Cell Biology” headed by Elena Conti. The molecular mechanism of how the Exosome is regulated, however, is not very clear yet.

The Max Planck scientists have now elucidated the atomic structure and the operating mechanism of a protein complex (Ski complex) which is involved in the activation of the cytoplasmic Exosome. The Ski complex contains several subunits and can be found in all eukaryotes – from yeast to humans. “We could show that the Ski complex and the Exosome interact directly and that they jointly form a channel for the RNA which is supposed to be degraded,” says Felix Halbach. Like DNA, RNA molecules are often folded. To be degraded by the Exosome, RNA molecules have to be unfolded first – this task is executed by the Ski complex. The unfolded RNA molecules can then be guided through the joint channel to the Exosome. “The Ski complex feeds RNA molecules to the Exosome,” explains the biochemist.

The results also reveal additional parallels between the Exosome and the Proteasome. The Proteasome is the protein complex responsible for the degradation of proteins in a cell. “It becomes clear that these two complexes are not only structurally and functionally similar,” says Elena Conti, “also their regulatory subunits work in a similar manner.” They unwind RNA molecules or, respectively, proteins and guide them to the active centers of the specific degradation machinery.

Original Publication
Halbach, F., Reichelt, P., Rode, M. and Conti, E.: The yeast Ski complex: Crystal structure and substrate channeling to the RNA exosome. Cell, August 15, 2013

DOI: 10.1016/j.cell.2013.07.017

Contact
Prof. Dr. Elena Conti
Structural Cell Biology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
E-Mail: conti@biochem.mpg.de
http://www.biochem.mpg.de/conti
Anja Konschak
Public Relations
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Phone: +49 (0) 89 8578-2824
E-Mail: konschak@biochem.mpg.de
Weitere Informationen:
http://www.biochem.mpg.de/1857469/075_Conti_Ski
– Press Release
http://www.biochem.mpg.de/conti
– Website of the Research Department “Structural Biology” (Elena Conti)

Media Contact

Anja Konschak Max-Planck-Institut

More Information:

http://www.biochem.mpg.de

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Enhancing the workhorse

Artificial intelligence, hardware innovations boost confocal microscope’s performance. Since artificial intelligence pioneer Marvin Minsky patented the principle of confocal microscopy in 1957, it has become the workhorse standard in life…

In the quantum realm, not even time flows as you might expect

New study shows the boundary between time moving forward and backward may blur in quantum mechanics. A team of physicists at the Universities of Bristol, Vienna, the Balearic Islands and…

Hubble Spots a Swift Stellar Jet in Running Man Nebula

A jet from a newly formed star flares into the shining depths of reflection nebula NGC 1977 in this Hubble image. The jet (the orange object at the bottom center…

Partners & Sponsors