Engineered microbe may be key to producing plastic from plants

University of Wisconsin-Madison postdoctoral researcher Alex Linz examines a plate streaked with N. aromaticivorans (in yellow), a soil bacterium that could turn a renewable source -- lignin from plant cells -- into a replacement for petroleum-based plastics. Photo by Chelsea Mamott, GLBRC

Researchers, like those at the University of Wisconsin-Madison-based, Department of Energy-funded Great Lakes Bioenergy Research Center, hoping to turn woody plants into a replacement for petroleum in the production of fuels and other chemicals have been after the sugars in the fibrous cellulose that makes up much of the plants' cell walls.

Much of the work of procuring those sugars involves stripping away lignin, a polymer that fills the gaps between cellulose and other chemical components in those cell walls.

That leaves a lot of useful cellulose, but also a lot of lignin — which has never carried much value. Paper mills have been stripping lignin from wood to make paper for more than a century, and finding so little value in the lignin that it's simply burned in the mills' boilers.

“They say you can make anything from lignin except money,” says Miguel Perez, a UW-Madison graduate student in civil and environmental engineering.

But they may not know Novosphingobium aromaticivorans as well as he does.

Perez, civil and environmental engineering professor Daniel Noguera and colleagues at GLBRC and the Wisconsin Energy Institute have published in the journal Green Chemistry a strategy for employing N. aromaticivorans to turn lignin into a more valuable commodity.

“Lignin is the most abundant source — other than petroleum — of aromatic compounds on the planet,” Noguera says, like those used to manufacture chemicals and plastics from petroleum. But the large and complex lignin molecule is notoriously hard to efficiently break into useful constituent pieces.

Enter the bacterium, which was first isolated while thriving in soil rich in aromatic compounds after contamination by petroleum products.

Where other microbes pick and choose, N. aromaticivorans is a biological funnel for the aromatics in lignin. It is unique in that it can digest nearly all of the different pieces of lignin into smaller aromatic hydrocarbons.

“Other microbes tried before may be able to digest a few types of aromatics found in lignin,” Perez says. “When we met this microbe, it was already good at degrading a wide range of compounds. That makes this microbe very promising.”

In the course of its digestion process, the microbe turns those aromatic compounds into 2-pyrone-4,6-dicarboxylic acid — more manageably known as PDC. By removing three genes from their microbe, the researchers turned the intermediate PDC into the end of the line. These engineered bacteria became a funnel into which the different lignin pieces go, and out of which PDC flows.

Bioengineers in Japan have used PDC to make a variety of materials that would be useful for consumer products.

“They have found out the compound performs the same or better than the most common petroleum-based additive to PET polymers — like plastic bottles and synthetic fibers — which are the most common polymers being produced in the world,” Perez says.

It would be an attractive plastic alternative — one that would break down naturally in the environment, and wouldn't leach hormone-mimicking compounds into water — if only PDC were easier to come by.

“There's no industrial process for doing that, because PDC is so difficult to make by existing routes,” says Noguera. “But if we're making biofuels from cellulose and producing lignin — something we used to just burn — and we can efficiently turn the lignin into PDC, that potentially changes the market for industrial use of this compound.”

For now, the engineered variation on N. aromaticivorans can turn at least 59 percent of lignin's potentially useful compounds into PDC. But the new study suggests greater potential, and Perez has targets for further manipulation of the microbe.

“If we can make this pipeline produce at a sufficient rate, with a sufficient yield, we might create a new industry,” Noguera says.

###

The Wisconsin Alumni Research Foundation has filed a patent application on this technology.

This research was funded by grants from the Department of Energy (BER DE-FC02-07ER64494 and DE-SC0018409) and the Chilean National Commission for Scientific and Technological Research.

–Chris Barncard, 608-890-0465, barncard@wisc.edu

Media Contact

Daniel Noguera
noguera@engr.wisc.edu
608-263-7783

 @UWMadScience

http://www.wisc.edu 

Media Contact

Daniel Noguera EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Insects help robots gain better grip

An international research team of biomechanics optimizes robotic movements inspired by insects. A whole generation of gripping robots has been developed using a design concept originally known from fish fins….

Simulations shed significant light on janus particles

Interfacial diffusion of nanoparticles strongly affected by their shape and surface coating. Named for a Roman god, Janus particles refer to nanoparticles that possess surfaces with two or more distinct…

How big does your quantum computer need to be?

What size will a quantum computer need to be to break Bitcoin encryption or simulate molecules? Quantum computers are expected to be disruptive and potentially impact many industry sectors. So…

Partners & Sponsors