Caught in a trap: bumblebees vs. robotic crab spiders

One of the bumblebee's main predators is the crab spider. Crab spiders hunt pollinating insects like bees and butterflies by lying in wait on flowers, and are particularly difficult for their prey to spot because they can change their colour to blend in with their surroundings.

Dr Tom Ings and Professor Lars Chittka from Queen Mary's School of Biological and Chemical Sciences wanted to discover whether bumblebees could learn to avoid these crab spiders. Their study, funded by the NERC* and published in the journal Current Biology, shows how a run in with a spider affected the bees' foraging patterns.

Dr Ings and his team allowed a colony of bumblebees (Bombus terrestris) to forage in a meadow of artificial flowers in a 'flight arena' which contained 'robotic' crab spiders. Some of the spiders were well hidden, others were highly visible. Whenever a bee landed on a flower which contained a robot spider, the spider 'caught' the bee by trapping it briefly between two foam pincers, before then setting it free to continue foraging.

The team used 3D tracking software to follow the bees' movements, and found that the bees which were caught by a camouflaged spider slowed down their subsequent inspection flights. Although they lost valuable foraging time by slowing down, they were more likely to accurately detect whether there was a hidden crab spider present.

In addition, the bees which had already been caught a few times the day before by the hidden spiders behaved as if they saw spiders where there were none i.e. they rejected foraging opportunities on safe flowers, 'just in case' and were more wary than bees which had been caught by the more conspicuous spiders.

Dr Ings commented: “Surprisingly, our findings suggest that there is no apparent benefit to the spider in being camouflaged, at least in terms of prey capture rates. Spider camouflage didn't increase the chances of a bumblebee being captured, or reduce the rate at which the bees learnt to avoid predators. But our results did show that the bees which encountered camouflaged spiders were worse off in terms of reduced foraging efficiency.”

Media Contact

Sian Halkyard EurekAlert!

Weitere Informationen:

http://www.qmul.ac.uk

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Who stole the light?

Self-induced ultrafast demagnetization limits the amount of light diffracted from magnetic samples at soft x-ray energies. Free electron X-ray lasers deliver intense ultrashort pulses of x-rays, which can be used…

Could breadfruit be the next superfood?

UBC researchers say yes Breadfruit is sustainable, environmentally friendly and a high-production crop. A fruit used for centuries in countries around the world is getting the nutritional thumbs-up from a…

New calculation refines comparison of matter with antimatter

Theorists publish improved prediction for the tiny difference in kaon decays observed by experiments. -An international collaboration of theoretical physicists–including scientists from the U.S. Department of Energy’s (DOE) Brookhaven National…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close