Biological signalling processes in intelligent materials

Graphic: Wilfried Weber

Scientists from the University of Freiburg have developed materials systems that are composed of biological components and polymer materials and are capable of perceiving and processing information.

These biohybrid systems were engineered to perform certain functions, such as the counting signal pulses in order to release bioactive molecules or drugs at the correct time, or to detect enzymes and small molecules such as antibiotics in milk. The interdisciplinary team presented their results in some of the leading journals in the field, including Advanced Materials and Materials Today.

Living systems (such as cells and organisms) and electrical systems (such as computers) respond to different input information, and have diverse output capabilities. However, the fundamental property these complex systems share is the ability to process information.

Over the past two decades, scientists have applied the principles of electrical engineering to design and build living cells that perceive and process information and perform desired functions. This field is called synthetic biology, and it has many exciting applications in the medical, biotechnology, energy and environmental sectors.

“Thanks to major progress in our understanding of the components and wiring of biological signalling processes, we are now at a stage where we can transfer biological modules from synthetic biology to materials”, explains lead researcher Prof. Wilfried Weber from the Faculty of Biology and the BIOSS Centre for Biological Signalling Studies.

A critical step in the development of these smart materials systems was to optimally align the activity of the biological building blocks. Similar to computers, incompatibility of individual components might crash the overall system. Key to overcoming this challenge were quantitative mathematical models developed by Prof. Jens Timmer and Dr. Raphael Engesser from the Faculty of Mathematics and Physics.

“A great thing about these synthetic biology-inspired materials systems is their versatility”, says Hanna Wagner, the first author of one of the studies and a doctoral candidate in the Spemann Graduate School of Biology and Medicine (SGBM).

The modular design concept put forth in these studies provides a blueprint for engineering biohybrid materials systems that can sense and process diverse physical, chemical or biological signals and perform desired functions, such as the amplification of signals, the storage of information, or the controlled release of bioactive molecules. These innovative materials might therefore have broad applications in research, biotechnology and medicine.

Original Publications
• Beyer, H.M./Engesser, R./Hörner, M./Koschmieder, J./Beyer, P./Timmer, J./Zurbriggen, M.D./Weber, W. (2018): Synthetic Biology Makes Polymer Materials Count. In: Advanced Materials.
doi: 10.1002/adma.201800472
• Wagner, H.J./Engesser, R./Ermes, K./Geraths, C./Timmer, J./Weber, W. (2018): Characterization of the synthetic biology-inspired implementation of a materials-based positive feedback loop. In: Data in Brief.
doi: 10.1016/j.dib.2018.05.074
• Wagner, H.J./Engesser, R./Ermes, K./Geraths, C./Timmer, J./Weber, W. (2018): Synthetic biology-inspired design of signal-amplifying materials systems. In: Materials Today.
doi: 10.1016/j.mattod.2018.04.006

Contact:
Prof. Dr. Wilfried Weber
Faculty of Biology / BIOSS Centre for Biological Signalling Studies
Albert Ludwigs University of Freiburg
Tel.: 0761/203-97654
wilfried.weber@bioss.uni-freiburg.de

Prof. Dr. Jens Timmer
Faculty of Mathematics and Physics / BIOSS Centre for Biological Signalling Studies
Albert Ludwigs University of Freiburg
Tel.: 0761/203-5829
jeti@fdm.uni-freiburg.de

Media Contact

Rudolf-Werner Dreier Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Informationen:

http://www.uni-freiburg.de/

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

2020 Arctic sea ice minimum at second lowest on record

NASA and the National Snow and Ice Data Center (NSIDC) at the University of Colorado Boulder shows that the 2020 minimum extent, which was likely reached on Sept. 15, measured…

Dresden physicists develop printable organic transistors

Scientists at the Institute of Applied Physics at TU Dresden have come a step closer to the vision of a broad application of flexible, printable electronics. The team around Dr…

Researchers discover a mechanism that causes cell nuclei to grow

By far the most important process in cell development is how cells divide and then enlarge in order to multiply. A research team headed by Freiburg medical scientist Prof. Dr….

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close