Bacterium From Canadian High Arctic Offers Clues to Possible Life on Mars

The temperature in the permafrost on Ellesmere Island in the Canadian high Arctic is nearly as cold as that of the surface of Mars. So the recent discovery by a McGill University led team of scientists of a bacterium that is able to thrive at –15ºC, the coldest temperature ever reported for bacterial growth, is exciting. The bacterium offers clues about some of the necessary preconditions for microbial life on both the Saturn moon Enceladus and Mars, where similar briny subzero conditions are thought to exist.

The team of researchers, led by Prof. Lyle Whyte and postdoctoral fellow Nadia Mykytczuk, both from the Dept. of Natural Resource Sciences at McGill University, discovered Planococcus halocryophilus OR1 after screening about 200 separate High Arctic microbes looking for the microorganism best adapted to the harsh conditions of the Arctic permafrost.

”We believe that this bacterium lives in very thin veins of very salty water found within the frozen permafrost on Ellesmere Island,” explains Whyte. “The salt in the permafrost brine veins keeps the water from freezing at the ambient permafrost temperature (~-16ºC), creating a habitable but very harsh environment. It’s not the easiest place to survive but this organism is capable of remaining active (i.e. breathing) to at least -25ºC in permafrost.”

In order to understand what it takes to be able to do so, Mykytczuk, Whyte and their colleagues studied the genomic sequence and other molecular traits of P. halocryophilus OR1. The researchers found that the bacterium adapts to the extremely cold, salty conditions in which it is found thanks to significant modifications in its cell structure and function and increased amounts of cold-adapted proteins. These include changes to the membranes that envelop the bacterium and protect it from the hostile environment in which it lives.

The genome sequence also revealed that this permafrost microbe is unusual in other ways. It appears to maintain high levels of compounds inside the bacterial cell that act as a sort of molecular antifreeze, keeping the microbe from freezing solid, while at the same time protecting the cell from the very salty exterior environment.

The researchers believe however, that such microbes may potentially play a harmful role in extremely cold environments such as the High Arctic by increasing carbon dioxide emissions from the melting permafrost, one of the results of global warming.

Whyte is delighted with the discovery and says with a laugh, “I’m kind of proud of this bug. It comes from the Canadian High Arctic and is our cold temperature champion, but what we can learn from this microbe may tell us a lot about how similar microbial life may exist elsewhere in the solar system.”

This research was funded by: Natural Sciences and Engineering Research Council of Canada CREATE Canadian Astrobiology Training Program, Canadian Space Agency, the Polar Continental Shelf Program, Canada Research Chairs Program, and the Canada Foundation for Innovation.

To contact the researcher: lyle.whyte@mcgill.ca

Katherine Gombay
Media Relations/Relations avec les médias
McGill University
T: 514-398-2189

Media Contact

Katherine Gombay Newswise

Weitere Informationen:

http://www.mcgill.ca

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Argonne targets lithium-rich materials as key to more sustainable cost-effective batteries

Next-generation batteries using lithium-rich materials could be more sustainable and cost-effective, according to a team of researchers with the U.S. Department of Energy’s (DOE) Argonne National Laboratory. The pivotal discovery,…

Why disordered light-harvesting systems produce ordered outcomes

Scientists typically prefer to work with ordered systems. However, a diverse team of physicists and biophysicists from the University of Groningen found that individual light-harvesting nanotubes with disordered molecular structures…

RadarGlass – from vehicle headlight to radar transceiver

As a result of modern Advanced Driver Assistance Systems, the use of radar technology has become indispensable for the automotive sector. With the installation of a large and growing number…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close