Ångström-Resolution Fluorescence Microscopy

RESI enables microscopy across length scales at Ångström resolution: From whole cells over individual proteins down to the distance between two adjacent bases in DNA.

Illustration: Max Iglesias / MPI of Biochemistry

A breakthrough in fluorescence microscopy has been achieved by the research group of Ralf Jungmann at the Max Planck Institute of Biochemistry (MPIB) and Ludwig-Maximilians-Universität (LMU) Munich.

The team developed Resolution Enhancement by Sequential Imaging (RESI), a revolutionary technique that enhances the resolution of fluorescence microscopy down to the Ångström scale. This innovation is poised to usher in a paradigm shift in our approach to study biological systems with thus far unprecedented detail.

Cells, the fundamental units of life, contain a plethora of intricate structures, processes and mechanisms that uphold and perpetuate living systems. Many cellular core components, such as DNA, RNA, proteins and lipids, are just a few nanometers in size. This makes them substantially smaller than the resolution limit of traditional light microscopy. The exact composition and arrangement of these molecules and structures is thus often unknown, resulting in a lack of mechanistic understanding of fundamental aspects of biology.

In recent years, super-resolution techniques have made leaps and bounds to resolve many sub-cellular structures below the classical diffraction limit of light. Single molecule localization microscopy, or SMLM, is a super-resolution approach that can resolve structures on the order of ten nanometers in size by temporally separating their individual fluorescence emission. As individual targets stochastically light up (they blink) in an otherwise dark field of view, their location can be determined with sub-diffraction precision. DNA-PAINT, invented by the Jungmann group, is a SMLM technique that uses transient hybridization of dye-labeled DNA “imager” strands to their target-bound complements to achieve the necessary blinking for super-resolution. However, to date, even DNA-PAINT has not been able to resolve the smallest cellular structures.

In the current study led by co-first authors Susanne Reinhardt, Luciano Masullo, Isabelle Baudrexel and Philipp Steen together with Jungmann, the team introduces a novel approach in super-resolution microscopy that enables fundamentally “unlimited” spatial resolution. The new technique, called “Resolution Enhancement by Sequential Imaging”, or RESI for short, capitalizes on the ability of DNA-PAINT to encode target identity via unique DNA sequences. By labeling adjacent targets, too close to each other to be resolved even by super-resolution microscopy, with different DNA strands, an additional degree of differentiation (a barcode) is introduced into the sample. By sequentially imaging first one, and then the other sequence (and thereby target), they can now be unambiguously separated. Critically, as they are imaged sequentially, the targets can be arbitrarily close to each other, something no other technique can resolve. Furthermore, RESI does not require specialized instrumentation, in fact, it can be applied using any standard fluorescence microscope, making it easily accessible for almost all researchers.

To demonstrate RESI’s leap in resolution, the team set themselves the challenge of resolving one of the smallest spatial distances in a biological system: The separation between individual bases along a double helix of DNA, spaced less than one nanometer (a billionth of a meter) apart. By designing a DNA origami nanostructure such that it presents single-stranded DNA sequences that protrude from a double helix at one base pair distance and then imaging these single strands sequentially, the research team resolved a distance of 0.85 nm (or 8.5 Ångström) between adjacent bases, a previously unimaginable feat. The researchers accomplished these measurements with a precision of 1 Ångström, or one ten-billionth of a meter, underscoring the unprecedented capabilities of the RESI approach.

Importantly, the technique is universal and not limited to applications in DNA nanostructures. To this end, the team investigated the molecular mode of action of Rituximab, an anti-CD20 monoclonal antibody that was first approved in 1997 for treatment of CD20-positive blood cancer. However, investigating the effects of such drug molecules on molecular receptor patterns has been beyond the spatial resolution capabilities of traditional microscopy techniques. Understanding whether and how such patterns change in health and disease as well as upon treatment is not only important for basic mechanistic research, but also for designing novel targeted disease therapies. Using RESI, Jungmann and his team were able to reveal the natural arrangement of CD20 receptors in untreated cells as dimers and uncover how CD20 re-arranged to chains of dimers upon drug treatment. The insights on the single-protein level now help to shed light on the molecular mode of action of Rituximab.

As RESI is performed in whole, intact cells, the technique closes the gap between purely structural techniques such as X-ray crystallography or cryogenic electron microscopy and traditional lower resolution whole-cell imaging approaches. Jungmann and his team are convinced that “this unprecedented technique is a true game-changer not only for super-resolution, but for biological research as a whole”.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Ralf Jungmann
Research Group Molecular Imaging and Bionanotechnology
Max Planck Institute of Biochemistry
E-Mail: jungmann@biochem.mpg.de
https://www.biochem.mpg.de/jungmann

Originalpublikation:

S.C.M. Reinhardt*, L.A. Masullo*, I. Baudrexel*, P.R. Steen*, R. Kowalewski, A.S. Eklund, S. Strauss, E.M. Unterauer, T. Schlichthaerle, M.T. Strauss, C. Klein & R. Jungmann#: Ångström-resolution fluorescence microscopy, Nature, May 24, 2023
* shared first authors
# corresponding author
https://www.nature.com/articles/s41586-023-05925-9

http://www.biochem.mpg.de/

Media Contact

Dr. Christiane Menzfeld Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

When the music changes, so does the dance

Controlling cooperative electronic states in Kagome metals. Playing a different sound track is, physically speaking, only a minute change of the vibration spectrum, yet its impact on a dance floor…

EcoFABs could lead to better bioenergy crops

Fabricated ecosystems created at Berkeley Lab will expedite microbiome research, and help underrepresented students in the classroom. A greater understanding of how plants and microbes work together to store vast…

Rice lab finds better way to handle hard-to-recycle material

Process transforms glass fiber-reinforced plastic into silicon carbide. Glass fiber-reinforced plastic (GFRP), a strong and durable composite material, is widely used in everything from aircraft parts to windmill blades. Yet…

Partners & Sponsors