An alternative route for studying the intrinsic properties of solid-state materials

Micro-scale device manufactured of polycrystalline TaGeIr MPI CPfS

To understand the origin of conflicting reports on TaGeIr, scientists from MPI CPfS and Northwestern University investigated the deviation of the crystal structure from the ideal MgAgAs model, possibility of off-stoichiometry (presence of homogeneity range), impact of the synthesis route on the real structure, as well as metallographic features of TaGeIr.

As a result of this comprehensive study, the presence of minority phases (resulting from the phase equilibria in the ternary system and not complete homogenization even by long thermal treatment) in TaGeIr specimens were found to result in extrinsic metallic behavior, as well as in appearance of superconductivity at low temperatures.

To study intrinsic properties of TaGeIr, the manufacturing of micro-scale devices was applied (Figure 1), and semiconducting behavior of TaGeIr was conclusively established.

The semiconducting properties of TaGeIr agree with electronic band structure calculations, revealing existence of the band gap only in case of MgAgAs-type structure with iridium atoms in heterocubic site (Figure 2). The latter is consistent with single crystal diffraction studies.

Figure 1. Micro-scale device manufactured of polycrystalline TaGeIr: (a) scanning electron microscopy of synthesized specimen with single-phase regions of TaGeIr (orange rectangles), (b) micro-scale device for resistivity measurement, and (c) resistivity data, revealing semiconducting nature of TaGeIr.

Figure 2. Electronic density of states of optimized TaGeIr models with Ir, Ge and Ta atoms on heterocubic 4c Wyckoff site with corresponding atomic arrangements.

The research at the Max Planck Institute for Chemical Physics of Solids (MPI CPfS) in Dresden aims to discover and understand new materials with unusual properties.

In close cooperation, chemists and physicists (including chemists working on synthesis, experimentalists and theoreticians) use the most modern tools and methods to examine how the chemical composition and arrangement of atoms, as well as external forces, affect the magnetic, electronic and chemical properties of the compounds.

New quantum materials, physical phenomena and materials for energy conversion are the result of this interdisciplinary collaboration.

The MPI CPfS ( www.cpfs.mpg.de ) is part of the Max Planck Society and was founded in 1995 in Dresden. It consists of around 280 employees, of which about 180 are scientists, including 70 doctoral students.

Yuri Grin, Irina Antonyshin, Eteri Svanidze

Iryna Antonyshyn, Frank R. Wagner, Matej Bobnar, Olga Sichevych, Ulrich Burkhardt, Marcus Schmidt, Markus König, Kenneth Poeppelmeier, Andrew Mackenzie, Eteri Svanidze, Yuri Grin,
Micro-scale device – an alternative route for studying the intrinsic properties of solid-state materials: case of semiconducting TaGeIr, Angew. Chem. Int. Ed., accepted, DOI: 10.1002/anie.202002693.

https://www.cpfs.mpg.de/3190250/20200326

Media Contact

Dipl.-Übers. Ingrid Rothe Max-Planck-Institut für Chemische Physik fester Stoffe

All news from this category: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to the Homepage

Comments (0)

Write comment

Latest posts

Bringing atoms to a standstill: NIST miniaturizes laser cooling

It’s cool to be small. Scientists at the National Institute of Standards and Technology (NIST) have miniaturized the optical components required to cool atoms down to a few thousandths of…

Record-breaking laser link could help us test whether Einstein was right

Scientists from the International Centre for Radio Astronomy Research (ICRAR) and The University of Western Australia (UWA) have set a world record for the most stable transmission of a laser signal through…

Adaptive optics with cascading corrective elements

A cascaded dual deformable phase plate wavefront modulator enables direct AO integration with existing microscopes–doubling the aberration correction range and greatly improving image quality. Microscopy is the workhorse of contemporary…

Partners & Sponsors

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close