A light twist

Credit: University of Tsukuba

A researcher at the University of Tsukuba develops a method for creating optically active polymers using a helical liquid crystal template, which may allow for future computer and TV displays to operate based on circularly polarized light.

A scientist from the Faculty of Pure and Applied Sciences at the University of Tsukuba developed a method for producing electrically conductive polymers that assume a helical configuration. By using a liquid crystal as a template, he was able to produce optically active polymers that can convert light into a circular polarization. This approach may help lower the cost of smart displays.

Walking into an electronic store these days can be an overwhelming experience if you happen to wander into the television aisle. The sizes of TVs have significantly expanded in recent years, while the prices have dropped. This is mainly due to the adoption of organic light emitting devices (OLEDs), which are carbon-based polymers that can glow at tunable optical wavelengths. These conjugated polymers, which have alternating single and double bonds, are both electrically conductive, and have colors that can be controlled by chemical doping with other molecules. Their oxidation state can also be rapidly switched using an electric voltage, which affects their coloration. However, future advancement may require new materials that can take advantage of other kinds of optical properties, such as circular polarization.

Now, a researcher from the University of Tsukuba has introduced a technique for creating polymers locked into a helical configuration, using a sacrificial liquid crystal template. “Polymers that both have optical activity and luminescent function can emit circularly polarized light,” author Professor Hiromasa Goto says.

For this process, the liquid crystal molecules were originally in a straight configuration. The addition of monomer molecules caused the liquid crystals to twist into a helical configuration. This imprints a “chirality” or handedness to the structure, making it oriented either clockwise or counterclockwise. An electric voltage was applied, which triggered polymerization of the monomers.

The liquid crystal template was then removed, leaving a polymer frozen in a helical shape. By breaking the mirror symmetry, the polymer has the ability to convert linearly polarized light into a circular polarization. The furan rings in the polymer not only contribute to the electrical conductivity, they also help stabilize the helical structure. “The pi-stacking interactions between the rings allows the polymer to aggregate into a highly ordered chiral system,” Professor Goto says. The resulting polymer was tested using circular dichroism absorption spectroscopy and was found to have strong optical activity at visible wavelengths. Future applications of this process may include cheaper and more energy efficient electronic displays.

This work was supported by the Japan Society for the Promotion of Science (JSPS), Grants-in-Aid for Scientific Research (Magnetic Properties of Magneto-Optically Active Helical Polymers, No. 20K05626).

Original Paper

The work is published in Molecular Crystals and Liquid Crystals as “Reaction field induction self-amplification optical activity during polymerization in liquid crystal” (DOI:10.1080/15421406.2022.2073421).

Correspondence

Associate Professor GOTO Hiromasa
Faculty of Pure and Applied Sciences, University of Tsukuba

Related Link

Faculty of Pure and Applied Sciences

Journal: Molecular Crystals and Liquid Crystals
DOI: 10.1080/15421406.2022.2073421
Article Publication Date: 13-May-2022

Media Contact

YAMASHINA Naoko
University of Tsukuba
kohositu@un.tsukuba.ac.jp

Media Contact

YAMASHINA Naoko
University of Tsukuba

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative vortex beam technology

…unleashes ultra-secure, high-capacity data transmission. Scientists have developed a breakthrough optical technology that could dramatically enhance the capacity and security of data transmission (Fig. 1). By utilizing a new type…

Tiny dancers: Scientists synchronise bacterial motion

Researchers at TU Delft have discovered that E. coli bacteria can synchronise their movements, creating order in seemingly random biological systems. By trapping individual bacteria in micro-engineered circular cavities and…

Primary investigation on ram-rotor detonation engine

Detonation is a supersonic combustion wave, characterized by a shock wave driven by the energy release from closely coupled chemical reactions. It is a typical form of pressure gain combustion,…