Plastic electronics for light diodes and prostheses

Is it possible to make components out of organic polymers (plastics) whose structure is such that severed nerves can grow right into them and connect with electrodes in a prosthetic hand, for example? This is one of the research fields for Tobias Nyberg at the Section for Biomolecular and Organic Electronics at Linköping University, Sweden.

Part of Tobias Nyberg’s dissertation is based on collaboration with cell biologist Helena Jerregård. Her task is to find ways to get tangled nerves to sort themselves out into nerve threads and tactile threads respectively. Tobias Nyberg’s job is to produce the structures in which the sorted nerves can connect with the electrodes from a future prosthesis. The materials he has used are plastics etched with patterns of tiny channels 20 millionths of a meter in size, covered both by an electrically conductive polymer and a protein that the nerves can grow on.

Another section of the dissertation treats nano- and micrometer-sized structures for solar cells and light diodes. In these contexts it is important that as much light as possible be absorbed by the material, despite the fact that, for other reasons, the material should also be a thin as possible. Tobias Nyberg has therefore found a way to create light-refracting patterns less than a thousandth of a millimeter in size, patterns that prevent light from going straight through, bending it instead so that more light is absorbed.

The Linköping researcher has also invented and applied for a patent for a method to make “micro-domes” of water. His point of departure is a surface that is patterned in circles, where the circles are made of a water-friendly material whereas the surrounding surface is made of a water-repellent material. If such a surface is exposed to cold, moisture in the air condenses on the water-friendly circles, building tiny bumps. This pattern in turn can be molded out of a polymer material with possible future applications in camera apertures, light diodes, and solar cells.

Media Contact

Ingela Björck alphagalileo

Alle Nachrichten aus der Kategorie: Interdisciplinary Research

News and developments from the field of interdisciplinary research.

Among other topics, you can find stimulating reports and articles related to microsystems, emotions research, futures research and stratospheric research.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Microscopy beyond the resolution limit

The Polish-Israeli team from the Faculty of Physics of the University of Warsaw and the Weizmann Institute of Science has made another significant achievement in fluorescent microscopy. In the pages…

Material found in house paint may spur technology revolution

Sandia developed new device to more efficiently process information. The development of a new method to make non-volatile computer memory may have unlocked a problem that has been holding back…

Immune protein orchestrates daily rhythm of squid-bacteria symbiotic relationship

Nearly every organism hosts a collection of symbiotic microbes–a microbiome. It is now recognized that microbiomes are major drivers of health in all animals, including humans, and that these symbiotic…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close