Optical Solution Revives Hands Free Mobile Telephones

Hands free sets for mobile phones may be on the verge of a big comeback thanks to new research by the University of Warwick. Many people used hands free sets in an attempt to avoid what they perceived as a microwave radiation risk from holding a mobile phone close to one`s head.

However when it was pointed out that the standard wire based hands free kit actually itself acted as an aerial amplifying any signal to the users head the kit fell out of favour with this type of user.

Now researchers led by Professor Roger Green at the University of Warwick have found and patented a way of producing optical signal based hands free devices for mobile phones that do indeed shield users who fear the microwave radiation from mobile phones.

The researchers have developed a simple means of converting electrical signals from the mobile phone into an optical signal that is guided up through a plastic tube to an ear-piece where the signal is converted back into an audible form. This plastic tube cannot act as a radio antenna so no radio energy is channelled to the users head.

The technology also uses a crystal based ear-piece speaker instead of an electromagnetic coil to further minimise the action of stray electric fields.

Roger Green, Professor of Electronic Communication Systems,
School of Engineering, University of Warwick,
Coventry CV4 7AL.Tel : +44 (0)24 76 523133
Mobile +44 (0)7855 901515
Roger.Green@warwick.ac.uk

Media Contact

Peter Dunn AlphaGalileo

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Creating good friction: Pitt engineers aim to make floors less slippery

Swanson School collaborators Kurt Beschorner and Tevis Jacobs will use a NIOSH award to measure floor-surface topography and create a predictive model of friction. Friction is the resistance to motion…

Synthetic tissue can repair hearts, muscles, and vocal cords

Scientists from McGill University develop new biomaterial for wound repair. Combining knowledge of chemistry, physics, biology, and engineering, scientists from McGill University develop a biomaterial tough enough to repair the…

Constraining quantum measurement

The quantum world and our everyday world are very different places. In a publication that appeared as the “Editor’s Suggestion” in Physical Review A this week, UvA physicists Jasper van…

Partners & Sponsors