Starting a European Research Infrastructure

At the end of 2007 the project received a grant from the European Commission towards a total budget of 20 Mio € for the coming two years. Thomas Rachel, Parliamentary State Secretary of the Federal Ministry of Education and Research opened the event.

PRACE, the Partnership for Advanced Computing in Europe, has been established to create a persistent pan-European High Performace Computing service for research. In the preparatory phase, which will run until the end of 2009, the project will establish the basis of transnational organisational structure for scientific supercomputing in Europe. By bringing together the know-how and resources of the partners, PRACE could provide European researchers with access to supercomputing capacities at a world-class level, transgressing those affordable at the national level. This includes a coordinated approach to hardware procurement and potentially a European platform for the development of hardware and software jointly with industry. Close cooperation with national and regional computer centres and scientific organisations will ease access to computing resources at all levels for scientists and engineers from academia and industry.

To achieve these challenging goals, the researchers from the partner organisations will work out the details of the project work during the kick-off meeting in Jülich. One task is to define a suitable legal form and organisational structure for the permanent European HPC infrastructure. Key to success of the project are the technical developments required to enable operation of a distributed supercomputing infrastructure, the scaling and optimisation of application software, and the evaluation of prototypes of the future computers. PRACE aims to install a petaflop/s system as early as 2009, i.e. a computer capable of performing one thousand trillion operations per second.

The availability of computing power is increasingly becoming a critical factor for success in science and industry: whether we're dealing with the climate, genetics or engineering researchers are relying more and more on advanced computing power to stay at the forefront of international competition

“Science and industry need computing power of the highest quality – on the one hand, to conduct pioneering research, and on the other, to create innovations”, explained Prof. Achim Bachem, Chairman of the Board of Directors at Research Centre Jülich and coordinator of the PRACE project. “Supercomputers have become an essential tool for all of the sciences”, said Bachem before going on to say that “in future, giant leaps in knowledge will only be possible with the help of complex simulations”. The aim of PRACE is to provide scientists in Europe with unlimited and independent access to fast supercomputers and competent support.

The following countries collaborate in the PRACE project: Germany, UK, France, Spain, Finland, Greece, Italy, The Netherlands, Norway, Austria, Poland, Portugal, Sweden, and Switzerland.

Through close cooperation with established European research organisations like, ESF, EMBL, and ESA PRACE will be embedded into the European Research Area.

The PRACE project receives funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° RI-211528

Media Contact

Leena Jukka alfa

More Information:

http://www.prace-project.eu

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors