Physicists make one step toward using insulating antiferromagnetic materials in future computers

Mikroskopische magnetische Momente in Antiferromagneten (links) haben ihren Nord- und Südpol abwechselnd – im Gegensatz zu denen in Ferromagneten (rechts im Bild). Abb./©: Lorenzo Baldrati, JGU

Future computer technology based on insulating antiferromagnets is progressing. Electrically insulating antiferromagnets such as iron oxide and nickel oxide consist of microscopic magnets with opposite orientations. Researchers see them as promising materials replacing current silicon components in computers.

Physicists at Johannes Gutenberg University Mainz (JGU) in collaboration with Tohoku University in Sendai in Japan, the synchrotron sources BESSY-II at Helmholtz-Zentrum Berlin (HZB), and Diamond Light Source, the UK's national synchrotron, have demonstrated how information can be written and read electrically in insulating antiferromagnetic materials.

By correlating the change in the magnetic structure, observed with synchrotron based imaging, to the electrical measurements performed at JGU, it was possible to identify the writing mechanisms.

This discovery opens the way toward applications ranging from ultra-fast logic to credit cards that cannot be erased by external magnetic fields – thanks to the superior properties of antiferromagnets over ferromagnets. The research has been published in Physical Review Letters.

Antiferromagnetic materials, interesting and not useless

Antiferromagnetic materials potentially allow for memory elements much faster and with higher storage capacity than what it is available now with conventional electronics. However, these materials are very difficult to control and detect, which makes the writing and reading operations in devices challenging. In his 1970 Nobel Prize speech, Louis Néel described antiferromagnetic materials as interesting but useless.

It was believed that one can manipulate these materials only by very strong magnetic fields, which cannot be generated easily and require, for example, the use of superconducting magnets. The situation has changed drastically in the last few years, with reports showing that it is possible to control antiferromagnetic materials including even insulators efficiently by electrical currents.

International collaboration studying the advantages of spintronics with antiferromagnets over conventional electronics

“We know that we are going to reach soon the limits of conventional electronics based on silicon, due to the continuous technological improvement. That is the main reason driving research in spintronics, which aims to exploit not only the charge of the electrons but also the spin degree of freedom, doubling the information carried and computed”, said Dr. Lorenzo Baldrati, Marie Skłodowska-Curie Fellow at Mainz University and first author of the paper.

“Our research shows that antiferromagnetic insulator materials can be written efficiently and read electrically, which is a key step in view of applications.” Lorenzo Baldrati works in the laboratory headed by Professor Mathias Kläui. “I am very happy to see our fruitful collaboration with our colleagues in Japan and groups in Mainz leading to another joint publication.

With the support of the German Academic Exchange Service (DAAD), the Graduate School of Excellence Materials Science in Mainz (MAINZ) and the German Research Foundation (DFG), we were able to initiate a lively exchange between Mainz and Sendai and with various other theory groups.”

Professor Olena Gomonay of the JGU-based group of Professor Jairo Sinova developed the theory. “I enjoyed the joint work the experimental colleagues in Mainz. It was exciting to see how theory and experiment help each other to discover new physical mechanisms and phenomena”, said Golomay.

“Though our work focused on only one particular system, it can be considered as a proof-of-principle for the family of antiferromagnetic insulators. We hope that the deep understanding of antiferromagnetic dynamics, which we achieved during this project, will push forward the exciting field of antiferromagnetic spintronics and will be a starting point for new joint projects from our groups.”

Dr. Lorenzo Baldrati
Condensed Matter Physics
Institute of Physics
Johannes Gutenberg University Mainz
55099 Mainz, GERMANY
phone +49 6131 39-27231
fax +49 6131 39-24076

L. Baldrati et al., Mechanism of Néel Order Switching in Antiferromagnetic Thin Films Revealed by Magnetotransport and Direct Imaging, Physical Review Letters, 24 October 2019,
DOI:10.1103/PhysRevLett.123.177201 – Kläui lab at the JGU Institute of Physics – Institute of Physics at JGU – Graduate School of Excellence Materials Science in Mainz (MAINZ) – CRC/Transregio 173 “Spin+X – Spin in its collective environment”

Media Contact

Petra Giegerich idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Nanostructures with a unique property

Nanoscale vortices known as skyrmions can be created in many magnetic materials. For the first time, researchers at PSI have managed to create and identify antiferromagnetic skyrmions with a unique…

Unraveling the genome in 3D-space

The cells that make up our body are tiny, each of them measuring only micrometers in diameter. The ensemble of chromosomal DNA molecules that encode the genome, on the other…

Study shows impact of climate change on Neotropical freshwater ecosystems

Researchers from six countries in the Americas explored bromeliad microcosms, showing how drought and flood affect the functioning of aquatic ecosystems, especially at the bottom of the food chain. To…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.