Compact amplifier could revolutionize optical communication

The novel compact optical amplifier is thousands of times smaller than its precursor. The new component is made of silicon nitride and consists of nine separate waveguides. Each waveguide is composed of 22 spirals and can amplify light by about 10 times with a noise figure of only 1.2 decibels. Each waveguide on the 20 millimeters chip outperforms the single bulky amplifier.
Image: Ping Zhao, Zhichao Ye and Yen Strandqvist/Chalmers University of Technology

Researchers at Chalmers University of Technology, Sweden, present a unique optical amplifier that is expected to revolutionise both space and fiber communication. The new amplifier offers high performance, is compact enough to integrate into a chip just millimeters in size, and – crucially – does not generate excess noise.

“This could be compared to switching from older, dial-up internet to modern broadband, with high speed and quality,” says Professor Peter Andrekson, Head of the Photonics Laboratory at the Department of Microtechnology and Nanoscience at Chalmers.

Optical communication makes it possible to send information over very long distances. The technology is useful in a range of applications, such as space communication and in fiber optic cables for internet traffic.

With communication based on light, rather than radio waves, we could, for example, quickly send high-resolution images from Mars. The information, carried by laser beams, could be sent with high speed from a transmitter on the planet to a receiver on Earth or on the Moon. Optical communication also allows us to use the internet around the world – whether the signal is transferred in optical fiber cables under the seabed or transmitted wirelessly.

Because the light – carrying the information between two distant points – loses power along the way, a large number of optical amplifiers are needed. Without amplifiers, up to 99 percent of the signal in an optical fiber cable would disappear within 100 kilometers.

A constant battle against excess noise

A well-known problem in optical communication, however, is that these amplifiers add excess noise that significantly impairs the quality of the signal you want to send or receive. Now, the Chalmers researchers present an extremely promising solution to an obstacle that has existed for decades.

“We have developed the world’s first optical amplifier that significantly enhances the range, sensitivity and performance of optical communication, that does not generate any excess noise – and is also compact enough to be of practical use,” says Ping Zhao, Postdoc at the Photonics Laboratory at Chalmers and one of the lead authors of the scientific paper, now published in Science Advances.

The light amplification in the project is based on a principle known as the Kerr effect, which so far is the only known approach that amplifies light without causing significant excess noise. The principle has been demonstrated before, but never in such a compact format– previous versions were too bulky to be useful.

The new amplifier fits in a small chip just a few millimeters in size, compared to previous amplifiers that have been several thousand times larger.

Tiny, quiet, and with high performance

Additionally, the new amplifiers offer a level of performance high enough that they can be placed more sparingly, making them a more cost-effective option. They also work in a continuous wave (CW) operation rather than a pulsed operation only.

“What we demonstrate here represents the first CW operation with an extremely low noise in a compact integrated chip. This provides a realistic opportunity for practical use in a variety of applications. Since it’s possible to integrate the amplifier into very small modules, you can get cheaper solutions with much better performance, making this very interesting for commercial players in the long run,” says research leader Peter Andrekson.

The new results also open doors to completely new applications in both technology and science, explains Peter Andrekson.

“This amplifier shows unprecedented performance. We consider this to be an important step towards practical use, not only in communication, but in areas including quantum computers, various sensor systems and in metrology when making atmospheric measurements from satellites for Earth monitoring.”

 

More about the research:

  • The scientific article “Overcoming the quantum limit of optical amplification in monolithic waveguides” has been published in Science Advances. The study was conducted by Zhichao Ye, Ping Zhao, Krishna Twayana, Magnus Karlsson, Victor Torres-Company and Peter Andrekson. The researchers work at the Department of Microtechnology and Nanoscience at Chalmers University of Technology.
  • The Chalmers researchers present the first compact CW-pumped monolithic parametric amplifier, and in addition demonstrated a noise performance well below the conventional quantum limit. The results were enabled by the lowest loss ever achieved in a dispersion-engineered integrated waveguide silicon-nitride material platform.
  • The research project has been funded by the Swedish Research Council (Grant VR-2015-00535 and VR-2020-00453) The Knut and Alice Wallenberg Foundation and Horizon 2020 Marie Skłodowska-Curie Innovative Training Network Microcomb (GA 812818).
  • Read more: Find the previous press release from Peter Andrekson’s research group.

For more information, please contact:

Ping Zhao, Postdoc, Photonics Laboratory at Chalmers, Department of Microtechnology and Nanoscience, Chalmers University of Technology, pingz@chalmers.se

Peter Andrekson, Professor, Head of the Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, +46 31 772 16 06, peter.andrekson@chalmers.se

Journal: Science Advances
DOI: 10.1126/sciadv.abi8150
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Overcoming the quantum limit of optical amplification in monolithic waveguides
Article Publication Date: 15-Sep-2021
COI Statement: The authors declare that they have no competing interests.

Media Contact

Mia Halleröd Palmgren
Chalmers University of Technology
mia.hallerodpalmgren@chalmers.se
Office: 46-721-513-512

Expert Contacts

Peter Andrekson
Chalmers University of Technology
peter.andrekson@chalmers.se
Office: +46 31 772 16 06

Ping Zhao
Chalmers University of Technology
pingz@chalmers.se

www.chalmers.se

Media Contact

Mia Halleröd Palmgren
Chalmers University of Technology

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative vortex beam technology

…unleashes ultra-secure, high-capacity data transmission. Scientists have developed a breakthrough optical technology that could dramatically enhance the capacity and security of data transmission (Fig. 1). By utilizing a new type…

Tiny dancers: Scientists synchronise bacterial motion

Researchers at TU Delft have discovered that E. coli bacteria can synchronise their movements, creating order in seemingly random biological systems. By trapping individual bacteria in micro-engineered circular cavities and…

Primary investigation on ram-rotor detonation engine

Detonation is a supersonic combustion wave, characterized by a shock wave driven by the energy release from closely coupled chemical reactions. It is a typical form of pressure gain combustion,…