# Blurred lines – mathematical software unites theory and practice

The article “3264 Conics in a Second” exemplifies how mathematical software can serve as a bridge between theoretical problems and applied methods. Besides creating the extensive numerical software package “HomotopyContinuation.jl”, the authors also established an easily accessible website, which vividly showcases the various applications of the software.

One of these applications, in turn, constitutes the solution to a classical geometric problem, which was made even more accessible with a webapp.

Steiner's conic problem

The published paper revolves around a classical geometric problem from the perspective of modern numerical algorithms. In 1848 the mathematician Jakob Steiner posed the question of finding the number of conics tangent to five given conics.

A conic is a planar curve given by the intersection of the surface of a cone with a plane, yet it also constitutes the zero set of a quadratic equation in two variables. Even though Steiner's question initially seems quite academically rigorous in nature it is pertinent to modern applications. The conic problem is regarded as the origin of modern intersection theory.

This theory then forms the foundation for modern algorithms to compute the roots of polynomial systems, which is a fundamental problem in many applied fields: robotics, material sciences, machine learning, biology or dynamical systems theory are just a few exemplary fields, where polynomial equations need to be solved.

Software package HomotopyContinuation.jl

Exactly these numerical computations form the basis of the authors specialized software package HomotopyContinuation.jl, which was developed for Julia, a dynamic programming language focused on high-performance numerical analysis.

The accompanying website not only offers an all-encompassing software manual, but also contextualizes the software through an assortment of applications ranging from computer vision, robotics, chemistry, mathematics of data and algebraic geometry.

A variety of guides introduce the user to the software features and explain how they can be applied to numerous problems. Such as Steiner's conic problem, which can be formulated as a problem of finding the roots of a polynomial system. The customized software package is able to compute these solutions within a mere second.

The scientists at the Max Planck Institute and the Technical University of Berlin created a web interface accompanying their publication which allows the reader to easily compute the 3264 solutions for their chosen conics (see juliahomotopycontinuation.org/diy).

This innovative form of science communication is a novelty for publications in the Notices. The authors were able to use their software to compute exact equations for arrangements with real solutions to Steiner's conic problem.

Thus, they strikingly demonstrated how theoretical results involve numerical procedures, as well as the possible application of numerical methods in proofs of specific theoretical results.

Dr. Paul Breiding

Technical University of Berlin

Institute of Mathematics

Mail: [email protected]

http://www.math.tu-berlin.de/~breiding

“3264 Conics in a Second” in the Notices of the American Mathematical Society

http://www.ams.org/journals/notices/202001/rnoti-p30.pdf

DOI: https://doi.org/10.1090/noti2010

http://www.juliahomotopycontinuation.org Information regarding the software HomotopyContinuation.jl

#### Media Contact

Alle Nachrichten aus der Kategorie: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

### Neueste Beiträge

## Pulsed lasers in liquids speed up hunt for effective catalysts

Chemical catalysts are the change agents behind the production of just about everything we use in our daily lives, from plastics to prescription drugs. When the right catalysts are mixed…

## Cell-to-cell contacts control liver regeneration

Dresden and Cambridge researchers identify cell type that regulates liver regeneration with touch. From the time of Aristotle, it has been known that the human liver has the greatest regenerative…

## Thawing permafrost releases greenhouse gas from depth

In a study led by the University of Bonn, geologists compared the spatial and temporal distribution of methane concentrations in the air of northern Siberia with geological maps. The result:…