Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wire laser material deposition – a smart way to save costs

24.09.2019

Within a BMBF-funded project, the Fraunhofer Institute for Laser Technology ILT is tackling the issue of 3D printing large components economically by using a new process called Hybrid AM that combines conventional manufacturing with additive processes. An important step forward in this process development is a new wire LMD head and its modular components which the Aachen-based experts will be presenting for the first time at formnext from November 19 to 22, 2019 in Frankfurt am Main.

Production experts are increasingly facing a dilemma: Conventional manufacturing processes such as turning, milling, eroding or forming are gradually reaching their limits whenever large and complex, individual metal components need to be manufactured.


At formnext, Fraunhofer ILT will be showing a new processing head that enables wire LMD in hybrid processes as part of the BMBF's ProLMD project.

© Fraunhofer ILT, Aachen, Germany


Close-up view of the wire LMD with coaxial ring beam.

© Fraunhofer ILT, Aachen, Germany / Volker Lannert

While additive manufacturing processes offer significant advantages in terms of saving raw materials, they still only have low deposition rates. Here, it makes sense to combine conventional and additive manufacturing processes.

Integrating hybrid production technology into existing systems

... more about:
»3D »ILT »LMD »Laser »Lasertechnik »manufacturing processes »optics

As part of the collaborative ProLMD project, funded by the German Federal Ministry of Education and Research (BMBF), Fraunhofer ILT is working with industrial partners to develop new processes for integrating hybrid laser material deposition (LMD) processes into the production chain. Their aim is to develop processes and systems that can be used, for example, to apply reinforcements or other geometric features onto cast or forged blank parts via LMD.

Developed at Fraunhofer ILT and now implemented in the ProLMD project, the new processing optics – with a ring-shaped beam – play an important role in coaxial LMD with wire. “The main advantage of the optics is the directional independence. Combined with the low cost filler material wire and a nearly 100 percent utilization, the overall costs can be reduced drastically”, explains Max Fabian Steiner, a researcher at Fraunhofer ILT. ”In addition, the process is dust-free. Compared to powder-based processes, it, therefore, not only offers cost savings but also improves occupational safety as well as environmental and employee protection”.

Working in high quality regardless of direction

The main features of the new processing optics are its directional independence and uniform intensity distribution of the laser beam intensity over the ring. Since reflective optics are used, such as copper in this case, high powers in a wide wavelength range are possible. Wire LMD can be used to manufacture components in a very high quality without pores and with extremely low post-processing requirements. In addition, the new head enables welding on 3D surfaces. As with most LMD processes, the new optics are equally suitable for repairing components.

By combining the non-directional process with a six-axis robot, the project partners have made the machining process very flexible. Since the application process can be controlled accurately, the process is stable even on large components and at high deposition rates, while maintaining consistent quality.

Inert gas cell enables titanium 3D printing

The new optics will be integrated into a process chain that improves the quality of the other components thanks to intermittent scanning. For this purpose, the geometry of the component is continuously recorded in order to adapt or correct the path planning with the aid of this data. An inert gas cell also allows users to repair titanium components in an argon atmosphere or to produce fully additive titanium components using 3D printing.

The experts from Fraunhofer ILT will be presenting the modular laser wire deposition head, the entire LMD process chain and the hybrid process at formnext from November 19 to 22 in Frankfurt am Main: at the joint Fraunhofer booth D51 in Hall 11.

The research and development project ProLMD is being funded by the German Federal Ministry of Education and Research (BMBF) under the grant number 02P15B115 as part of the ProMat3D funding measure. It is being supervised by the Project Management Agency Karlsruhe (PTKA).

Wissenschaftliche Ansprechpartner:

Max Fabian Steiner M. Sc.
Group Laser Material Deposition
Telephone +49 241 8906-267
max.fabian.steiner@ilt.fraunhofer.de

Jan Bremer M. Sc.
Group Laser Material Deposition
Telephone +49 241 8906-356
jan.bremer@ilt.fraunhofer.de

Jana Kelbassa M. Sc.
Group Laser Material Deposition
Telephone +49 241 8906-8331
jana.kelbassa@ilt.fraunhofer.de

Weitere Informationen:

https://www.ilt.fraunhofer.de/en.html

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Further reports about: 3D ILT LMD Laser Lasertechnik manufacturing processes optics

More articles from Trade Fair News:

nachricht Fraunhofer FHR to Showcase Non-contact, Non-destructive Quality Control of Plastic Products at the K 2019
17.10.2019 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht IVAM product market at the COMPAMED 2019: No digitalization in medical technology without microtechnologies
11.10.2019 | IVAM Fachverband für Mikrotechnik

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>