Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Videos Controlled by Eye Movement – New Generation of Microdisplays

24.03.2015

Diving into a new virtual world and taking part in films by eye control – all this might be possible with a new SVGA-OLED microdisplay. The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been working for a long time on the development of OLED microdisplays combining display and camera functions. The latest work will be presented by scientists at the Hannover Messe (13th – 17th April 2015, booth of TU Dresden – CFAED, hall 2, booth A38).

The world of the so-called wearables is colorful and versatile: Wrist band measuring the pulse, buttons, which indicate the receipt of e-mails with color change or glasses providing information about the environment.


Bidirectional microdisplay

Fraunhofer FEP

Already in 2012, Fraunhofer FEP presented a pair of glasses which enables a normal perception of the environment and, at the same time, offers the possibility to get digital information projected directly into the user’s field of view, which can even be controlled by eye movement.

Thus, for example a technician is able to read a manual while working and scroll pages with his/her eyes without interrupting activities. This is possible with a so-called bidirectional OLED microdisplay, which is a display element that includes an embedded image sensor. The sensor can record the user’s eye movement with this integrated camera and thus enables an interaction with the displayed information.

A full-color OLED microdisplay has now been developed by the scientist where the display as well as the integrated camera functions have SVGA resolution (800 × 600 × RGBW).

Bernd Richter, Head of Department “IC and System Design”, where the new display has been developed, describes the new features: “The new generation of bidirectional microdisplays represents a quantum leap in many ways. All essential key parameters of the chip could be improved significantly.

This includes an increased resolution of the display and the image sensor as well as an enhanced color depth and the integration of further important components directly into the microdisplay chip. Following this the microdisplay can be operated with significantly fewer external components and thus contributes to further development of miniaturized and efficient systems.”

To ease customers the entry in these new technology the scientists offer development kits in various configurations. The new microdisplay can be transferred directly into product-specific applications. Moreover, fast and cost-efficient customer-specific adaptations and further developments towards innovative microdisplays are possible, which are based on an efficient design methodology of the Si-CMOS backplane circuit.

A part of the work was financed by the Federal Ministry of Education and Research (BMBF) (project ISEMO, funding code: 16SV3682) and by the Fraunhofer-Gesellschaft.

Press contact:

Mrs. Annett Arnold

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP | Phone +49 351 2586 452 | Annett.Arnold@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Germany | www.fep.fraunhofer.de

Weitere Informationen:

http://s.fhg.de/YmT

Annett Arnold | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>