Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Support Free with “TwoCure” – Innovation in Resin-Based 3D Printing

02.11.2017

The Fraunhofer Institute for Laser Technology ILT and Rapid Shape GmbH are working together to further develop resin-based 3D printing. The new “TwoCure” process requires no support structures and is significantly more efficient and productive than conventional 3D printing techniques for plastic components. Experts from Fraunhofer ILT will be presenting the state-funded joint development that makes use of the interaction of light and cold in forming the components at formnext 2017 from November 14 to 17 in Frankfurt am Main.

Much like stereolithography, one of the best-known processes for printing 3D plastic components works using photolithographic light exposure that causes liquid resins to harden layer by layer. This additive process has one significant disadvantage however: it requires supports that the user must include in the design, then construct during the process, and then laboriously remove from the product.


Image 1: With the new “TwoCure” process printed ring-in-ring structure, manufactured without support structures and without platform contact.

© Fraunhofer ILT & Rapid Shape GmbH.


Image 2: Through liquefaction of a build volume support material drains off.

© Fraunhofer ILT & Rapid Shape GmbH.

As part of a Central Innovation Program for SMEs (ZIM) project funded by the German Federal Ministry for Economic Affairs and Energy, Fraunhofer ILT is collaborating with Rapid Shape GmbH* in Heimsheim to develop an efficient alternative to this process. A liquid resin is still used and is applied layer by layer to a resin reservoir. Similar to other systems built by Rapid Shape GmbH, an LED light unit illuminates the liquid resin in the component’s layered geometry.

“Much like with a projector, an image is projected into the resin bath and the polymer hardens in the areas that are illuminated. The resin in other areas initially remains liquid,” explain Holger Leonards and Andreas Hoffmann, project managers at Fraunhofer ILT.

“Free-floating” Components Created in the Build Volume

Supports were used up to now because the plastic structures, which are often delicate, would otherwise collapse. “Users dislike these process-related supports because additional CAD preparation and time-consuming follow-up work delay the production process,” says Andreas Geitner, technical director at Rapid Shape GmbH. The process developed in cooperation between research and industry not only does without supports, it also enables components to be positioned in the entire build volume without being connected to the platform.

“Furthermore, we can create 3D components directly in the build volume, anywhere we choose,” Holger Leonards explains. “The components no longer have to be built on platform. Because the total build volume is being used more efficiently, each 3D printing job can create significantly more parts.”

The scientists from Aachen and their industrial partners are making use of hybrid technology: they solidify the liquid monomer photochemically by means of light and thermally by means of cold. “The material is applied warm and then irreversibly cured by light,” says Leonards.

“At the same time the cooled installation space ensures that the thermoset component being created layer by layer freezes to form a block with the resin that has solidified like wax.” The user can subsequently liquefy this at room temperature, so that the support material drains off: what remains are the 3D printed components that just need to be briefly cleaned and post-cured. The aim in future is for these steps to be automated in a process chain too.

“TwoCure”: First System for Making Jewelry

Because two curing procedures are used, the development stage process is called “TwoCure”. The idea for the process was born in a joint workshop. For this new type of 3D printing, the material and photochemical process were developed by Fraunhofer ILT, whilst the procedure and systems technology were successfully realized by Rapid Shape GmbH.

The first prototype has already been built and should soon be ready for series production. This new kind of polymer 3D printing was successfully tested with models for the jewelry industry. These models are used to create jewelry rings, for example. According to Andreas Schultheiss: “Jewerly manufacturers have so far used supports to create their models and then removed them in a very laborious process before smoothing the surface. These last two production steps are expensive and superfluous. The new process means they will not be needed in future.”

Fraunhofer ILT at formnext

The first “TwoCure” components and information about the process are being presented by our scientists at the Fraunhofer joint stand at formnext (hall 3.0, booth F50) in Frankfurt am Main from November 14 to 17, 2017.

*The Schultheiss GmbH has implemented the ZIM project and is marketing the technology via its cooperation partner Rapid Shape GmbH.

Contact

Dipl.-Chem. Holger Leonards
Competence Area Ablation and Joining
Phone +49 241 8906-601
holger.leonards@ilt.fraunhofer.de

M.Sc. Andreas Hoffmann
Competence Area Ablation and Joining
Phone +49 241 8906-447
andreas.hoffmann@ilt.fraunhofer.de

Weitere Informationen:

https://www.ilt.fraunhofer.de/en.html
https://www.ilt.fraunhofer.de/en/fairs-and-events/fairs/formnext-2017.html

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>