Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

19.06.2019

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1« sensor technology has already proven itself, for example, in the measurement of metal strip thicknesses.


Circulating measuring spot for inline measurements of LMD track heights.

© Fraunhofer ILT, Aachen, Germany


Laser processing optics with »bd-1« sensor and compact measuring beam deflection for inline geometry measurements.

© Fraunhofer ILT, Aachen, Germany

Since the process operates bidirectionally, the laser measuring radiation takes the same path back and forth. Transmitter and receiver do not have to be aligned with each other; therefore, the measuring radiation can also be guided via scanner mirrors or other deflection devices. For this reason, the »bd-1« measurement technology can be combined very well with laser beams used for laser deposition, for example.

»bd-1« sensor technology compensates for process fluctuations

These characteristics argued in favor of using bidirectional sensor technology for additive manufacturing processes as well: For example, track height and layer thickness in Laser Material Deposition depend on many factors. Despite all efforts to keep the process parameters constant, there are always fluctuations – for example in the material feed and the traversing speed at reversal points.

The consequences are fluctuating layer thicknesses and geometric deviations. Since the material feed, for example, cannot be stabilized at will, the application quality depends on the continuous inline monitoring of the coating thickness.

This monitoring makes it possible to react quickly to fluctuations in track heights and layers. Bidirectional inline measurement can be used for quality assurance and process control, especially for Laser Material Deposition of larger components.

Easy installation in commercial laser optics

The measurement technology was initially combined with an in-house optical system. In Munich, Fraunhofer ILT will now be showing how well the »bd-1« sensor technology runs with standard commercial optics of a major German laser manufacturer.

Such solutions can be implemented without great effort, because – thanks to the compact design of the »bd-1« measuring heads – they can be easily integrated into existing optics. In order to measure applied track heights independently of direction, the measuring radiation is coupled coaxially to the processing radiation and deflected around the application point via mirrors.

Fraunhofer ILT at LASER World of PHOTONICS

Users can apply the »bd-1« sensor technology for powder- and coaxial wire-based LMD processes for quality assurance and for setting up real-time control of manufacturing processes.

The sensors are also suitable for monitoring and controlling other applications such as laser drilling and laser microstructuring. Interested parties can find out more in a discussion with experts from Fraunhofer ILT at the joint Fraunhofer booth 431 in Hall A2 from June 24 to 27, 2019.

Wissenschaftliche Ansprechpartner:

Dr. Stefan Hölters
Production Measurement Technology
Telephone +49 241 8906-436
stefan.hoelters @ilt.fraunhofer.de

Prof. Dr. Reinhard Noll
Head of the Competence Area Measurement Technology and EUV Sources
Telephone +49 241 8906-138
reinhard.noll@ilt.fraunhofer.de

Weitere Informationen:

https://www.ilt.fraunhofer.de/en.html

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Trade Fair News:

nachricht Medica 2019: Arteriosclerosis - new technologies help to find proper catheters and location of vasoconstriction
11.11.2019 | Technische Universität Kaiserslautern

nachricht Laser versus weeds: LZH shows Farming 4.0 at the Agritechnica
08.11.2019 | Laser Zentrum Hannover e.V.

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Im Focus: Fraunhofer IAF establishes an application laboratory for quantum sensors

In order to advance the transfer of research developments from the field of quantum sensor technology into industrial applications, an application laboratory is being established at Fraunhofer IAF. This will enable interested companies and especially regional SMEs and start-ups to evaluate the innovation potential of quantum sensors for their specific requirements. Both the state of Baden-Württemberg and the Fraunhofer-Gesellschaft are supporting the four-year project with one million euros each.

The application laboratory is being set up as part of the Fraunhofer lighthouse project »QMag«, short for quantum magnetometry. In this project, researchers...

Im Focus: How Cells Assemble Their Skeleton

Researchers study the formation of microtubules

Microtubules, filamentous structures within the cell, are required for many important processes, including cell division and intracellular transport. A...

Im Focus: World Premiere in Zurich: Machine keeps human livers alive for one week outside of the body

Researchers from the University Hospital Zurich, ETH Zurich, Wyss Zurich and the University of Zurich have developed a machine that repairs injured human livers and keep them alive outside the body for one week. This breakthrough may increase the number of available organs for transplantation saving many lives of patients with severe liver diseases or cancer.

Until now, livers could be stored safely outside the body for only a few hours. With the novel perfusion technology, livers - and even injured livers - can now...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Molecules move faster on a rough terrain

20.01.2020 | Physics and Astronomy

Spider-Man-style robotic graspers defy gravity

20.01.2020 | Physics and Astronomy

Laser diode emits deep UV light

20.01.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>