Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simple method of binding pollutants in water

24.03.2015

New types of membrane adsorbers remove unwanted particles from water and also, at the same time, dissolved substances such as the hormonally active bis-phenol A or toxic lead.

To do this, researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB imbed selective adsorber particles in filtration membranes. From 24th to 27th March 2015, the IGB presents the membrane adsorbers and other innovative technologies for water treatment at the “Wasser Berlin International” Trade Fair and Congress. The Fraunhofer IGB is in Hall 2.2, Booth 422.


Tiny polymeric particles that bind pollutants from the water are imbedded in the porous carrier structure of the membrane adsorbers

Fraunhofer IGB

It was not until January 2015 that the European Food Safety Authority (EFSA) lowered the threshold value for bisphenol A in packaging. The hormonally active bulk chemical is among other things a basic material for polycarbonate from which, for example, CDs, plastic tableware or spectacles glasses are manufactured. Due to its chemical structure, bisphenol A is not completely degraded in the biological stages of treatment plants and is discharged into rivers and lakes by the purification facility.

Activated carbon or adsorber materials are already used to remove chemicals, anti-biotics or heavy metals from waste or process water. However, a disadvantage of these highly porous materials is the long contact time that the pollutants require to diffuse into the pores. So that as many of the harmful substances as possible are captured even in a shorter time, the treatment plants use larger quantities of adsorbers in correspondingly large treatment basins. However, activated carbon can only be regenerated with a high energy input, resulting for the most part in the need to dispose of large quantities of material contaminated with pollutants.

Also, membrane filtration with nanofiltration or reverse osmosis membranes, which can remove the contaminating substances, is not yet cost-effective for the removal of dissolved molecules from high-volume flows such as process or wastewater. Membranes filter the water through their pores when a pressure is built up on one side of the membrane, thus holding back larger molecules and solid particles. But the smaller the membrane pores are, the higher the pressure – and therefore the more energy – that is required to separate the substances from water.

Membrane adsorbers – filtering and binding in one step

Researchers at the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart have opted for a new approach that combines the advantages of both methods. When manufacturing the membranes they add small, polymeric adsorber particles. The resulting membrane adsorbers can – in addition to their filtration function – adsorptively bind substances dissolved in water. “We make use of the porous structure of the membrane located underneath the separation layer. The pores have a highly specific surface so that as many particles as possible can be imbedded, and they also provide optimum accessibility,” says Dr. Thomas Schiestel, Head of the “Inorganic Interfaces and Membranes” working group at the Fraunhofer IGB.

“Unlike conventional adsorbers, our membrane adsorbers transport the pollutants convectively. This means that, with the water flowing rapidly through the membrane pores, a contact time lasting only a few seconds is sufficient to adsorb pollutants on the particle surface,” says the scientist. Up to 40 percent of the weight of the membrane adsorbers is accounted for by the particles, so their binding capacity is correspondingly high. At the same time the membrane adsorbers can be operated at low pressures. As the membranes can be packed very tightly, very large volumes of water can be treated even with small devices.

Functional adsorber particles

The researchers manufacture the adsorber particles in a one-step, cost-efficient process. In this patented process monomeric components are polymerized with the help of a crosslinking agent to generate 50 to 500 nanometer polymer globules. “Depending on which substances are to be removed from the water, we select the most suitable one from a variety of monomers with differing functional groups,” Schiestel explains. The spectrum here ranges from pyridine, which tends to be hydrophobic, by way of cationic ammonium compounds and includes anionic phosphonates.

Selective removal of pollutants and metals

The researchers were able to show in various tests that the membrane adsorbers remove pollutants very selectively by means of the particles, which are customized for the particular contaminant in question. For example, membrane adsorbers with pyridine groups bind the hydrophobic bisphenol A especially well, whereas those with amino groups adsorb the negatively charged salt of the antibiotic penicillin G.

“The various adsorber particles can even be combined in one membrane. In this way we can remove several micropollutants simultaneously with just one membrane adsorber,” says Schiestel, pointing out a further advantage. Equipped with different functional groups, the membrane adsorbers can also remove toxic heavy metals such as lead or arsenic from the water. Phosphonate membrane adsorbers, for example, adsorb more than 5 grams of lead per square meter of membrane surface area – 40 percent more than a commercially available membrane adsorber.

Cost-effective and regenerable

So that the membrane adsorbers can be used several times, the adsorbed pollutants have to be detached once again from the particles in the membrane. “Membrane adsorbers for bisphenol A can be fully regenerated by a shift of the pH value,” Schiestel explains. The concentrated pollutants can then be disposed off cost-effectively or broken down using suitable oxidative processes.

The regenerability of the membrane adsorbers also makes possible a further application: reutilization of the separated molecules. This additionally makes the technology attractive for recovering valuable precious metals or rare earth metals.

The Fraunhofer IGB is presenting the membrane adsorbers and other innovative technologies for water purification at the “Wasser Berlin International” Trade Fair and Congress from 24th to 27th March 2015 in Berlin. The IGB is in Hall 2.2, Stand 422.

Literature
K. Niedergall, M. Bach, T. Hirth, G.E.M. Tovar, T. Schiestel (2014) Removal of micropollutants from water by nanocomposite membrane adsorbers, Sep. Purif. Technol. 131: 60-68
K. Niedergall, M. Bach, T. Schiestel, G.E.M. Tovar (2013) Nanostructured composite adsorber membranes for the reduction of trace substances in water: the example of bisphenol A, Industrial Chemical Research ACS Special Issue: Recent Advances in Nanotechnology-based Water Purification Methods, Ind. Eng. Chem. Res. 52/39 14011, DOI: 10.1021/ie303264r

Weitere Informationen:

http://www.igb.fraunhofer.de/en/press-media/press-releases/2015/simple-method-of...

Dr. Claudia Vorbeck | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

More articles from Trade Fair News:

nachricht Start to the year for medical exhibitions: international high-tech companies meet at MD&M West
17.01.2019 | IVAM Fachverband für Mikrotechnik

nachricht Innovative Infrared heat reduces energy consumption in coating packaging for food
12.12.2018 | Heraeus Noblelight GmbH

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>