Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor+Test2012: Navigating the shopping center

03.05.2012

With a GPS receiver in your smartphone, you can navigate your way over highways and streets with certainty. But once you get inside a building, it provides no further assistance.

That’s why Fraunhofer researchers, together with the Bosch Corporation and other partners, have engineered a navigation system for interior spaces. Thanks to a clever combination of sensors, the module tracks the movements and position of its user in precise detail. At the Sensor+Test trade fair in Nuremberg from May 22-24, 2012, researchers will deliver a live demonstration of how this new interior-space navigation operates.


The virtual 3-D interior model of the building is displayed on the monitor. The location and the distance covered are marked in the map. © Fraunhofer IPA


The sensor module is barely larger than a fingernail. © Fraunhofer IPA

A smartphone with GPS functionality is a delightful tool. It guides its owner safely and with certainty through the streets of an unfamiliar city. But after arriving at the destination, all too often the orientation is gone, because as soon as you enter a building, you lose contact with the GPS satellites. Then you are on your own – whether in the interminable hallways of the trade fair complex, or inside one of the branches of the local megaplex shopping mall. “Wouldn‘t it be helpful,” Harald von Rosenberg thought to himself, “if at such moments the smart phone could quickly shift to an interior space navigator, and point the way through the rows of shops and stairwells?” Well, that is absolutely possible, as the project manager for “motion control systems” at the Stuttgart-based Fraunhofer Institute for Manufacturing Engineering and Automation IPA now demonstrates through the “MST-Smartsense” cooperation project from the German Federal Ministry for Education and Research BMBF. The project is a joint collaboration that also brings together companies such as Robert Bosch GmbH, Bosch Sensortec GmbH, Binder Elektronik GmbH, AEMtec GmbH, and Sensitec GmbH with the Fraunhofer Research Institution for Modular Solid State Technologies EMFT and the Fraunhofer Institutes for Reliability and Microintegration IZM and for Electronic Nano Systems ENAS. These partners developed a sensor module for navigating interior spaces that is the size of a fingernail – and thus predestined for use in a smartphone.

Sensors detect length of stride
Similar to conventional pedometers, the module registers how fast and how far a person is walking. That said, it is much more precise and intelligent than the customary devices found on the market, because it even registers the direction in which the user is walking. “There has never before been a device so small that can accomplish so much,” says von Rosenberg. Basic pedometers initially have to be programmed. Body height, length of stride – all these data must be stored by the user before he or she starts to walk. That could be a hindrance if multiple individuals use the same counter. Moreover, conventional devices are not very accurate. Unlike the new navigation sensor from Stuttgart: located right inside the tiny module are several sensors which are processed combined. These include an acceleration sensor that registers the motion of the body, and a magnetic field sensor that measures the alignment of the body through its position in relation to the earth‘s magnetic field. In tandem, they map a highly precise movement pattern. “Sensor fusion” is the term von Rosenberg uses to refer to such intelligent coupling of multiple sensors. The fascinating thing is that the module does not have to be calibrated by the user. On its own, it detects if the individual has long legs, or is just taking baby steps. This is possible because von Rosenberg initially trained the software using the stride patterns of various individuals. The sensor instantly registers how an individual is walking and can estimate the stride length exactly.
Display indicates the ideal walk route
Naturally, the interior space navigator only functions if it knows the building. For this purpose, soon smartphones will automatically download three-dimensional building plans from the Internet. These are coupled with the sensor module to display a user’s, current position on the smartphone. Even more: the ideal walk route also appears on the display. Building plans can also be fed automatically to the cellular device as soon as you enter a building. It would also be possible to apply a two-dimensional QR code on the layout plan at the entrance of the building. Users could then scan the code with their smartphone, to download the corresponding map.
... more about:
»GPS data »IPA »Navigating »magnetic field

And there is yet another element that distinguishes the new sensor module. It has its own small microcomputer that processes the sensor‘s measurement values into clear data – like a degree figure for visual orientation, or the length of a segment of travel. These can be used directly by the smartphone. By contrast, conventional sensors only produce basic raw data that another processor has to calculate into discrete data. “Unlike what we typically find, the MST-Smartsense Sensor can be installed directly into a smartphone or tablet computer without any additional elements, and supply apps with data,” says von Rosenberg. Since the sensor module works autonomously, it does not have to rely on the computer capacity of the smartphone‘s built-in processor. It uses its own small processor that needs substantially less power. That relieves the device‘s battery.

A demonstration of the new indoor navigation can be seen at the trade show Sensor+Test 2012 from May 22 to 24 in Nuremberg, at the Fraunhofer joint exhibition booth in Hall 10, Booth 202. There, IPA researchers will present another example of a successful sensor fusion system: a navigation module for robots and mobile measurement systems that, using the human eye as its model, additionally secures its position through a camera image.

Harald Rosenberg | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/may/navigating-the-shopping-center.html

Further reports about: GPS data IPA Navigating magnetic field

More articles from Trade Fair News:

nachricht Medica 2019: Arteriosclerosis - new technologies help to find proper catheters and location of vasoconstriction
11.11.2019 | Technische Universität Kaiserslautern

nachricht Laser versus weeds: LZH shows Farming 4.0 at the Agritechnica
08.11.2019 | Laser Zentrum Hannover e.V.

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

The Arctic atmosphere - a gathering place for dust?

09.12.2019 | Earth Sciences

New ultra-miniaturized scope less invasive, produces higher quality images

09.12.2019 | Information Technology

Discovery of genes involved in the biosynthesis of antidepressant

09.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>