Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor+Test2012: Navigating the shopping center

03.05.2012

With a GPS receiver in your smartphone, you can navigate your way over highways and streets with certainty. But once you get inside a building, it provides no further assistance.

That’s why Fraunhofer researchers, together with the Bosch Corporation and other partners, have engineered a navigation system for interior spaces. Thanks to a clever combination of sensors, the module tracks the movements and position of its user in precise detail. At the Sensor+Test trade fair in Nuremberg from May 22-24, 2012, researchers will deliver a live demonstration of how this new interior-space navigation operates.


The virtual 3-D interior model of the building is displayed on the monitor. The location and the distance covered are marked in the map. © Fraunhofer IPA


The sensor module is barely larger than a fingernail. © Fraunhofer IPA

A smartphone with GPS functionality is a delightful tool. It guides its owner safely and with certainty through the streets of an unfamiliar city. But after arriving at the destination, all too often the orientation is gone, because as soon as you enter a building, you lose contact with the GPS satellites. Then you are on your own – whether in the interminable hallways of the trade fair complex, or inside one of the branches of the local megaplex shopping mall. “Wouldn‘t it be helpful,” Harald von Rosenberg thought to himself, “if at such moments the smart phone could quickly shift to an interior space navigator, and point the way through the rows of shops and stairwells?” Well, that is absolutely possible, as the project manager for “motion control systems” at the Stuttgart-based Fraunhofer Institute for Manufacturing Engineering and Automation IPA now demonstrates through the “MST-Smartsense” cooperation project from the German Federal Ministry for Education and Research BMBF. The project is a joint collaboration that also brings together companies such as Robert Bosch GmbH, Bosch Sensortec GmbH, Binder Elektronik GmbH, AEMtec GmbH, and Sensitec GmbH with the Fraunhofer Research Institution for Modular Solid State Technologies EMFT and the Fraunhofer Institutes for Reliability and Microintegration IZM and for Electronic Nano Systems ENAS. These partners developed a sensor module for navigating interior spaces that is the size of a fingernail – and thus predestined for use in a smartphone.

Sensors detect length of stride
Similar to conventional pedometers, the module registers how fast and how far a person is walking. That said, it is much more precise and intelligent than the customary devices found on the market, because it even registers the direction in which the user is walking. “There has never before been a device so small that can accomplish so much,” says von Rosenberg. Basic pedometers initially have to be programmed. Body height, length of stride – all these data must be stored by the user before he or she starts to walk. That could be a hindrance if multiple individuals use the same counter. Moreover, conventional devices are not very accurate. Unlike the new navigation sensor from Stuttgart: located right inside the tiny module are several sensors which are processed combined. These include an acceleration sensor that registers the motion of the body, and a magnetic field sensor that measures the alignment of the body through its position in relation to the earth‘s magnetic field. In tandem, they map a highly precise movement pattern. “Sensor fusion” is the term von Rosenberg uses to refer to such intelligent coupling of multiple sensors. The fascinating thing is that the module does not have to be calibrated by the user. On its own, it detects if the individual has long legs, or is just taking baby steps. This is possible because von Rosenberg initially trained the software using the stride patterns of various individuals. The sensor instantly registers how an individual is walking and can estimate the stride length exactly.
Display indicates the ideal walk route
Naturally, the interior space navigator only functions if it knows the building. For this purpose, soon smartphones will automatically download three-dimensional building plans from the Internet. These are coupled with the sensor module to display a user’s, current position on the smartphone. Even more: the ideal walk route also appears on the display. Building plans can also be fed automatically to the cellular device as soon as you enter a building. It would also be possible to apply a two-dimensional QR code on the layout plan at the entrance of the building. Users could then scan the code with their smartphone, to download the corresponding map.
... more about:
»GPS data »IPA »Navigating »magnetic field

And there is yet another element that distinguishes the new sensor module. It has its own small microcomputer that processes the sensor‘s measurement values into clear data – like a degree figure for visual orientation, or the length of a segment of travel. These can be used directly by the smartphone. By contrast, conventional sensors only produce basic raw data that another processor has to calculate into discrete data. “Unlike what we typically find, the MST-Smartsense Sensor can be installed directly into a smartphone or tablet computer without any additional elements, and supply apps with data,” says von Rosenberg. Since the sensor module works autonomously, it does not have to rely on the computer capacity of the smartphone‘s built-in processor. It uses its own small processor that needs substantially less power. That relieves the device‘s battery.

A demonstration of the new indoor navigation can be seen at the trade show Sensor+Test 2012 from May 22 to 24 in Nuremberg, at the Fraunhofer joint exhibition booth in Hall 10, Booth 202. There, IPA researchers will present another example of a successful sensor fusion system: a navigation module for robots and mobile measurement systems that, using the human eye as its model, additionally secures its position through a camera image.

Harald Rosenberg | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/may/navigating-the-shopping-center.html

Further reports about: GPS data IPA Navigating magnetic field

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>