Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Heat Forms Plastic Tubes Quickly and In A Targeted Fashion

18.07.2008
Heraeus Noblelight at Fakuma 2008

• Infrared emitters heat plastics in a contact-free manner


Carbon Infrared emitters from Heraeus heat through thick PVC tubes in a few minutes.
Copyright Heraeus Noblelight 2008

• Optimally matched infrared emitters help to automate bending processes

• Infrared emitters from Heraeus Noblelight are on Stand 1121 in Hall B1 at Fakuma

Plastic tubes and pipes are increasingly being used in civil engineering as well as in domestic technology. Infrared emitters from Heraeus Noblelight help to stress relieve hoses, bend tubes and pipes or form sleeves. They transfer energy in a contact-free manner and generate heat primarily in the material. As a result, heating takes place uniformly and rapidly. This saves energy and space and the heating process can be easily automated.

Heraeus Noblelight is showing infrared heaters for plastics at Fakuma in Friedrichshafen from 14 to 18 October.

Tubes and pipes are used for wastewater, drainage, drinking water and gas or electric cable protection. Plastics such as Polyethylene (PE), polyvinylchloride (PVC) or polypropylene (PP) are increasingly replacing conventional materials such as concrete, stoneware and copper.

Before they are used, plastic tubes are bent into shape, provided with grooves for sealing rings or they have sleeves so that they can be inserted into each other. Conventionally hot air, heating sleeves or hot liquid baths have been used to soften the plastic before forming it. Infrared emitters transfer energy in a contact-free manner and generate heat primarily in the material. As a result heating takes place uniformly and no material sticks to the heat source. The targeted and controllable heat prevents thermal damage or messy pressure points.

Infrared emitters heat targeted areas of a tube or pipe, as the heated length of the emitter can be matched to the bending radius. In contrast to hot air oven, the edge areas remain relatively cool, which permits the component to be simply held, facilitating process automation. Infrared emitters can be precisely matched to the material and process and this saves energy. Because of the high heat transfer capacity of infrared radiation, heating times can also be reduced, which means production is faster or valuable production space is saved. Trials in our in-house Applications Centre have shown that a few minutes infrared radiation are sufficient to warm through PVC tubes with a wall thickness of more than 20 mm.

Conventionally, the sleeving of tubes takes place with the aid of heating jackets, which transfer heat into the plastic through close contact. Shortwave Omega emitters are circular and can heat small sections in a targeted manner. Omega emitters or small flat emitters arranged in a circle heat the tube ends without contact to make the plastic there soft, so that a sleeve socket can be formed.

Shortwave infrared emitters have response times in terms of seconds so that they can be easily controlled. They transfer heat rapidly at high efficiency. Infrared emitters need be switched on only when energy is needed and this is another energy-saving feature.

As well as shortwave emitters, Heraeus Noblelight also offers Carbon infrared emitters with a spectrum which is particularly well matched to the absorption characteristics of plastics. Carbon infrared emitters combine highly effective medium wave radiation with the short response times of shortwave emitters.

Common to all Heraeus emitters is the way they can be matched to the relevant process in terms of shape, size and spectrum. As a result, complex heating stages can be reproduced and automation can be introduced.

Heraeus Noblelight offers the complete spectrum of infrared heat from very shortwave NIR to medium wave Carbon Infrared (CIR). Heraeus has more than 40 years experience in infrared emitters and carries out practical tests with customers’ own materials in its own in-house Application Centres, to determine optimum process solutions.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology- and market-leaders in the production of specialist light sources. In 2007, Heraeus Noblelight had an annual turnover of 90 Million € and employed 666 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with over 155 years of tradition. Our businesses include precious metals, sensors, dental and medical products, quartz glass, and specialty lighting sources. With product revenues of € 3 billion and precious metal trading revenues of € 9 billion, as well as over 11,000 employees in more than 100 companies worldwide, Heraeus holds a leading position in its global markets.

Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
phone +49 6181/35-8545, fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
phone +49 6181/35-8547, fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>