Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paint on Plastic Dries More Quickly with Infrared Emitters

11.01.2008
Modern cars, computers and electronic equipment contain components, which are printed and then coated with a protective or a metallised lacquer.

Conventionally, these lacquers and coatings are dried or cured by means of hot air. Increasingly, the market requires faster production speeds, which, in many cases, can be achieved by means of infrared drying. A British manufacturer of key boards and keypads is drying its protective lacquer coatings in less than four minutes using infrared, compared with the previous 20minutes required by a hot air oven.


Medium wave infrared emitters from Heraeus Noblelight dry keypads much faster than a hot air oven. This increases quality and saves energy. Copyright Heraeus Noblelight 2007

Heraeus Noblelight will be showing emitters for lacquer drying on stand 3541, Hall 3, at PaintExpo in Karlsruhe.

Kestrel Injection Moulders in Great Britain produces keyboards and keypads for cars or for use in electronic equipment, computers or white goods. These pads are injection moulded plastic products and need to be printed and coated with a protective clear lacquer. Previously, the components had to be dried for around 20 minutes in a hot air oven. During this extended period, dust could settle on the product to adversely affect the quality.

An infrared oven from Heraeus Noblelight is now drying and curing the coatings on the keypads in less than 20% of the time required by the convection ovens.

With its 1.5m length and 1m height, the infrared oven fitted easily into the available space. It consists of two modules, each of 3 kW output and is fitted with medium wave infrared emitters, which in pre-installation trials had proved themselves as a successful and faster alternative to hot air.

Currently, the new ovens handle two different types of keypads. One type is coated with a water-based lacquer after manufacture, is pre-dried, printed and then finished with a clear protective lacquer. Other keypads do not require a pre-coating and can be immediately printed and coated with the protective lacquer.

Since the installation of the infrared ovens, the rejection rates have been significantly reduced. Naturally, this enormously reduces the time in which dust can fall on the keypad surfaces. In addition, the infrared system has also proved itself to be extremely energy-saving, as, in contrast to the convection ovens, it needs to be switched on only when heating is required.

Heraeus Noblelight offers a comprehensive range of infrared emitters to heat plastics, lacquers or coatings rapidly and efficiently. Infrared ovens are so compact that they can be easily retrofitted into existing production systems and layouts. This saves space, time and cost.

Heraeus Noblelight GmbH with its headquarters in Hanau and with subsidiaries in the USA, Great Britain, France, China, Australia and Puerto Rico, is one of the technology- and market-leaders in the production of specialist light sources. In 2006, Heraeus Noblelight had an annual turnover of 88 Million € and employed 651 people worldwide. The organisation develops, manufactures and markets infrared and ultraviolet emitters for applications in industrial manufacture, environmental protection, medicine and cosmetics, research, development and analytical laboratories.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company in the business segments of precious metals, sensors, dental and medical products, quartz glass and specialty lighting sources. With revenues of more than EUR 10 billion and more than 11,000 employees in over 100 companies, Heraeus has stood out for more than 155 years as one of the world’s leading companies involved in precious metals and materials technology.

Further Information:

Readers:
Heraeus Noblelight GmbH
Reinhard-Heraeus-Ring 7
D-63801 Kleinostheim
phone +49 6181/35-8545, fax +49 6181/35-16 8545
E-Mail hng-infrared@heraeus.com
Press:
Dr. Marie-Luise Bopp
Heraeus Noblelight GmbH,
phone +49 6181/35-8547, fax +49 6181/35-16 8547
E-Mail marie-luise.bopp@heraeus.com

Dr. Marie-Luise Bopp | Heraeus Noblelight GmbH
Further information:
http://www.heraeus-noblelight.com

More articles from Trade Fair News:

nachricht Special exhibition area "Microtechnologies for Optical Devices" establishes itself at W3
12.03.2020 | IVAM Fachverband für Mikrotechnik

nachricht Augmented reality system facilitates manual manufacturing of products made of fiber-reinforced composite materials
04.03.2020 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

3D printer sensors could make breath tests for diabetes possible

27.03.2020 | Power and Electrical Engineering

TU Bergakademie Freiberg researches virus inhibitors from the sea

27.03.2020 | Life Sciences

The Venus flytrap effect: new study shows progress in immune proteins research

27.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>