Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precision space maneuvers

01.02.2012
"embedded world" trade fair - Nuremberg

Spacecraft must operate with utmost precision when conducting landing maneuvers on other planets, or docking to a space station. To ensure they do not drift off course, imaging sensors collect a fl ood of data that are analyzed in real time.


The MUSE onboard computer allows a spacecraft to be piloted and positioned with pinpoint accuracy. © Fraunhofer FIRST

Researchers at the Fraunhofer Institute for Computer Architecture and Software Technology FIRST have engineered a system based on multicore technologies that allow spacecraft to be piloted and positioned with pinpoint accuracy. It can be seen at the embedded world trade show in Nuremberg from February 28 to March 1, 2012 (Hall 5, Booth 228).

For a spacecraft to “see” and maintain its equilibrium, it needs a high-performance onboard computer. This device must process a myriad of sensor data simultaneously, and withstand the severe conditions of outer space. Through the MUSE project (Multicore Architecture for Sensor-based Position Tracking in Space), researchers are seeking to improve the positioning and guidance of such spacecraft.

Under the plan, scientists from FIRST developed an extremely high-performing onboard computer using modern multi-core processors. High-resolution cameras and infrared or radar sensors on the spacecraft deliver immense data volumes that help determine the position of the target object. These data have to be processed in real time, in order to compute the precise control of the vehicle. Spaceflight-enabled computers to date have always had to make sacrifi ces here, in terms of quality, due to the high performance requirements.

“In space, the major challenge is this: the system must provide an enormously high computing capacity, while power supply, weight, space and cooling requirements are kept to a minimum. In addition, cosmic radiation may cause sporadic data corruption, which has to be detected and rectifi ed by means of error tolerance mechanisms,” explains Samuel Pletner, in charge of Aerospace Business Development at FIRST. “We have to reliably eliminate the possibility of undetected errors leading to erroneous guidance commands and ultimately, uncontrolled movements of the spacecraft.”

The researchers solve the problem with the P4080 Multicore Processor, manufactured by Freescale, which is highly integrated and particularly robust. Besides maximum processing capacity, more effi cient error tolerance mechanisms can also be realized with these processors. Fraunhofer experts have devised complex position-detection algorithms specially designed for multi-core architectures. Thus, critical calculations can be conducted on a number of different processor cores, and the results checked through a reliable comparison.

The MUSE project is funded by the Space Flight Agency of the German Aerospace Center DLR, with funding from the German Federal Ministry of Economics and Technology.

Samuel Pletner | Fraunhofer-Institut
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/january/precision-space-maneuvers.html

Further reports about: AEROSPACE Architecture FIRST LEGO League MUSE Multicore Space information technology

More articles from Trade Fair News:

nachricht Fingerprint spectroscopy within a millisecond
24.06.2019 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

nachricht Release agent-free: ReleasePLAS® technology replaces silicone coating in wax injection molding
21.06.2019 | Fraunhofer IFAM

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>