Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plethora – the universal prototyping platform for wireless systems

04.02.2014
The Plethora prototyping platform offers developers various sensors, wireless technologies and interfaces on a single board.

Plethora was originally designed to make it easier to test different distributed data collection and localization processes with a single hardware platform.


Plethora combines a wide selection of sensors and wireless modules and interfaces. So developers are able to implement and test different data transmission systems on a single platform.
Bernd Müller / Fraunhofer ESK

However, because Plethora provides all developers of complex, distributed applications in fields such as building or process automation greater testing leeway, Fraunhofer ESK researchers are introducing the prototyping platform to the public for the first time at the embedded world trade fair in Nürnberg (February 25-27, 2014, stand 5-250, hall 5).

For applications that require distributed data collection and processing capability, developers are likely to have various solutions at their disposal, all of which need different sensors and wireless technologies. The issue is that it is often not possible to test different system designs because different platforms would be required. Plethora addresses this problem by offering a single platform for the prototype implementation and testing of different data transmission, automation or localization processes.

To achieve this, the system combines a wide selection of sensors and various modules and interfaces. Using Plethora, developers can test solutions for diverse application scenarios in a near-real environment and among other tasks, compare the various properties of different wireless technologies in an easy and efficient manner. With its modular design, the platform furthermore offers an ideal basis for installing additional complex sensors or wireless modules.

Technical data

The sensors and wireless modules are controlled by a high-performance Cortex-M3 microcontroller. The platform comes installed with the following sensors: barometer, accelerometer, magnetometer, temperature, humidity and ambient light. Additional external sensors can be connected. For communication and localization, Plethora features a transceiver in the 868 MHz band, as well as IEEE 802.15.4 and IEEE 802.11 b/g compliant transceivers for the 2.4 GHz band.

Each receiver has its own amplifier and software-controlled antenna outputs that can also be used to analyze the impact of various antennas and transmission levels on the localization and range of the system. Plethora can be powered by a lithium-polymer battery, as well as by a USB or 12V connection, both of which can be used to charge the battery.

For developers who need additional functionality, other modules are very easy to connect by means of a CAN bus or via SPI, I2C and UART interfaces, which are accessible through 12-pin expansion connectors.

Outlook

The next phase of development involves integration of an ultra wideband transceiver, which enables significantly higher speeds for video transmissions and precise localization algorithms. In parallel, the comprehensive software framework will be enhanced in order to further simplify access to the system and to better link the various technologies with one another.

Plethora's flexibility puts Fraunhofer ESK in the position of being able to develop localization and communication systems tailored to the individual needs of the customer. Interested customers can even employ the system to implement their own ideas. Examples of the situation-specific requirements and concepts that make custom development necessary include the type of power supply, the integration of existing sensors and networks and the special characteristics of the application itself.

Marion Rathmann | Fraunhofer-Institut
Further information:
http://www.esk.fraunhofer.de/en/media/press_releases/pm1401.html

More articles from Trade Fair News:

nachricht Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition
19.06.2019 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Robot-assisted sensor system for the quality monitoring of hybrid parts and components
13.06.2019 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>