Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photochemical metallization allows the manufacture of touchscreens in a single step

11.04.2016

The research scientists at INM - Leibniz Institute for New Materials are presenting a new process that, in a single step, allows manufacture of conductive paths that are just a few micrometers in width on flexible foils. As a result, new designs for appliances with flexible or even rollable displays will be possible.

In order for touchscreens on smartphones and tablets to function, microscopically fine conductor paths are required on their surfaces. When the users' fingers tip on or wipe over them, electrical circuits open and close, thus making the different functions of the smartphone possible.


Photochemical metallization allows the manufacture of touchscreens in a single step.

Copyright: INM

At the edges of the appliances, these microscopic circuit paths come together to form larger conductive paths. Until now, these different conductive paths had to be manufactured in several steps in time-consuming processes.

The research scientists at INM – Leibniz-Institute for New Materials are now presenting a new process that, in a single step, allows manufacture of conductive paths that are just a few micrometers in width on carrier materials such as glass but also on flexible foils.

On plastic foil, in particular, manufacture using the roll-to-roll process thus becomes particularly efficient. As a result, new designs for appliances with flexible or even rollable displays will be possible.

The researchers will be presenting their results from 25 to 29 April 2016 in Hall 2 at the stand B46 of the Hannover Messe in the context of the leading trade fair for R & D and Technology Transfer.

For the new process, the developers use a process known as photochemical metallization: When a photoactive layer is irradiated by UV light, colorless silver compounds are transformed into electrically conductive metallic silver. Several methods can be applied to transfer the silver compound in paths or other structures on plastic foil or glass. In this way, paths of varying sizes down to the smallest size of a thousandth of a millimeter can be achieved. By irradiating these with UV light, corresponding conductive paths are created.

“First, the foils are coated with a photoactive layer of metal oxide nanoparticles,” Peter William de Oliveira, Head of Optical Materials explained. “After that we apply the colorless, UV-stable silver compound.” By irradiation of this sequence of layers, the silver compound disintegrates on the photoactive layer and the silver ions are reduced to form metallic, electrically conductive silver.

Oliviera added that this process offered several benefits: Since it is fast, flexible, variable in size, inexpensive and environmentally friendly, further process steps for post-treatment became unnecessary.

This basic principle allows conductive paths to be created very individually. “There are three different possibilities we can use depending on the requirements: `Writing conductive paths` using UV lasers is the process which is particularly suitable for the initial customized prototype manufacture and testing the new design of the conductive path. However, for mass production, this method is too time-consuming,” the physicist de Oliveira explained.

Photomasks that are only permeable for UV light at the desired positions can also be used for structuring. “For a `semi-continuous process` they are particularly suitable for applying the conductive paths on glass,” the materials expert says.

The researchers are currently working intensely on a third method, the usage of transparent stamps. “These stamps push out the silver compound mechanically; conductive paths then only occur where there is still silver compound,” de Oliveira stated. Since the stamps are made of a soft plastic, they can be arranged on a roll. Because they are transparent, researchers at INM are now working on embedding the UV source directly in the roll.

“Thus, the initial steps for a roll-to-roll process would already have been taken,” the Head of Optical Materials group concluded. It would therefore be possible to manufacture conductive path structures of various sizes on foils on a large scale.

Your contact at the Booth:
Dr. Michael Opsölder

Your expert at INM:
Dr. Peter William de Oliveira
INM – Leibniz Institute for New Materials
Head Optical Materials
Head InnovationCenter INM
Phone: +49681-9300-148
OptiMat@leibniz-inm.de

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological systems and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbrücken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 220 employees.

Weitere Informationen:

http://www.leibniz-inm.de/en
http://www.leibniz-gemeinschaft.de/en

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

More articles from Trade Fair News:

nachricht AchemAsia 2019 will take place in Shanghai
15.06.2018 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

nachricht Insects supply chitin as a raw material for the textile industry
05.06.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Trade Fair News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>